Ознакомительная версия.
Приведенный пример демонстрирует важное положение: даже если данные значимы на, скажем, 3%, тестируя 100 человек, не являющихся экстрасенсами, на наличие сверхъестественных способностей или 100 недейственных препаратов на эффективность, вы должны быть готовы к тому, что несколько человек проявят экстрасенсорные способности или некоторые лекарства проявят себя как действенные. Вот одна из причин, по которой результаты политических выборов или медицинских исследований, особенно не отличающихся масштабностью, противоречат данным предварительных опросов или более ранних исследований. И все же оценка статистической значимости и другие подобные методы являются большим подспорьем для ученых, особенно когда у тех есть возможность проводить широкомасштабные контролируемые исследования. В быту мы не проводим такие эксперименты, да и подсознание наше статистическим анализом не занимается, вместо этого мы полагаемся на инстинкт. Как-то оказалось, что приобретенная мной печь-камин фирмы «Викинг» — исключительное барахло, и случайно я узнал, что у одной моей знакомой сложилось ровно такое же впечатление. Тогда я стал предупреждать друзей, чтобы они не покупали товары этой марки. Когда, летая рейсами «Юнайтед эрлайнс», я несколько раз наткнулся на стюардесс, более раздражительных, чем на рейсах других авиакомпаний, я стал выбирать других перевозчиков. Располагая небольшим количеством данных, я инстинктивно вывел закономерность.
Иногда подобные закономерности имеют значение, иногда — нет. В обоих случаях тот факт, что наше восприятие закономерностей в повседневных ситуациях обладает в равной степени и большой убедительностью и высокой субъективностью, имеет под собой подоплеку. Данный факт предполагает некоторую относительность, то есть, как доказал Фарадей, у каждого свое представление о действительности. Например, в 2006 г. издание «The New England Journal of Medicine» обнародовало результаты исследования, на проведение которого было потрачено 12,5 млн. долларов. В исследовании приняли участие пациенты с диагнозом «остеоартрит коленного сустава». По итогам было выявлено, что комплекс биологически активных добавок с аминоглюкозой и хондроитином так же неэффективен в качестве болеутоляющего, как и плацебо. Тем не менее один именитый врач никак не мог расстаться с этим убеждением и продолжал настаивать на пользе добавок. Свои выводы он озвучил в выступлении по радио, убеждая слушателей в возможной пользе подобного лечения таким примером: «У врача моей жены есть кот, и жена говорит, что этот кот утром просто не может встать без небольшой дозы аминоглюкозы и хондроитинсульфата»{192}.
При более внимательном рассмотрении мы обнаружим, что в современном обществе многие расхожие мнения основаны, как и столоверчение, на общепринятых иллюзиях. В то время как в главе 8 рассматривалось, с какой поразительной регулярностью происходят случайные события, теперь мы подойдем к вопросу с другой стороны: проанализируем, каким образом события, на первый взгляд имеющие явную причину, могут на самом деле оказаться результатом случайности.
Человеку свойственно выискивать в событиях модели и приписывать им значения. Канеман и Тверский проанализировали множество методов быстрой оценки характера данных и принятия решения в условиях неопределенности. Они назвали такие методы «сокращенными эвристическими процедурами». В целом, эвристические процедуры полезны, но, как и наш способ обрабатывать визуальную информацию иногда приводит к зрительным иллюзиям, так и эвристические процедуры могут иногда приводить к систематическим ошибкам. Канеман и Тверский назвали такие ошибки «ошибками предвзятости». Все мы пользуемся эвристическими процедурами, и все страдаем от ошибок предвзятости. Если зрительные иллюзии мало что значат в нашей повседневной жизни, то ошибки предвзятости играют важную роль в принятии решений. Поэтому в конце XX в. появилось направление, изучающее, каким образом человеческий разум воспринимает случайность. Ученые пришли к выводу, что «у людей смутное представление о случайности, они не способны распознать и осознанно воспроизвести ее»{193}, и, что хуже всего, мы постоянно недооцениваем роль случая в нашей жизни и принимаем решения, которые нам явно не пойдут на пользу{194}.
Представьте некую последовательность событий. Это могут быть квартальные дивиденды или ряд удачных или неудачных свиданий, организованных сайтом знакомств. В обоих случаях, чем длиннее последовательность или чем большее количество последовательностей вы анализируете, тем выше вероятность, что обнаружится любая закономерность, какую только можно себе вообразить, причем исключительно случайно. На самом деле, для последовательности «хороших» или «плохих» кварталов или удачных или неудачных свиданий вообще не требуется причина. Прекрасный пример привел математик Джордж Спенсер-Браун: в случайной последовательности 10 в степени 1 000 007 нулей и единиц следует ожидать по меньшей мере 10 непересекающихся подпоследовательностей 1 млн. следующих друг за другом нулей{195}. Представьте бедолагу, который натолкнулся на одну из этих цепочек, пытаясь использовать случайные числа в каких-нибудь научных целях. Его компьютерная программа генерирует сначала 5 нулей подряд, потом 10, 20, 1000, 10000, 100000, 500000. Будет ли он прав, если отошлет программу назад и потребует вернуть деньги? Какова будет реакция ученого, раскрывшего только что купленную таблицу случайных чисел и увидевшего, что все числа в ней — нули? Идея Спенсера-Брауна заключалась в том, что существует разница между случайным процессом и результатом такого процесса, который кажется случайным. Компания «Apple» столкнулась с подобной проблемой в связи с методом случайной тасовки, который она изначально применяла в своих плеерах «iPod»: истинная случайность приводила к повторам, поэтому, когда пользователи слышали подряд одну и ту же песню или песни одного и того же певца, они считали, что тасовка дала сбой. Тогда компания сделала эту функцию «менее случайной, чтобы она воспринималась как более случайная», — как сказал основатель компании Стив Джобс{196}.
Философ Ганс Рейхенбах одним из первых стал изучать восприятие случайных моделей. В 1934 г. он заметил: те, кто не имел опыта в определении вероятности, с трудом распознают случайную последовательность событий{197}. Рассмотрим распечатку результатов последовательности 200 бросков монеты, где X — это решка, а О — это орел:
ooooxxxxoooxxxooooxxooxoooxxxooxxoooxxxxoooxooxoxoooooxooxoooooxxooxxxoxxoxoxxxxoooxxooxxoxooxxxooxooxoxoxxoxoooxoxooooxxxxoooxxooxoxxoooxoooxxoxooxxooooxooxxxxooooxxxoooxoooxxxxxxooxxxooxooxoooooxxxx
Можно с легкостью обнаружить в приведенных данных закономерность — например, четыре О, за которыми идут четыре X, и ряд из шести X ближе к концу. Согласно математической теории случайностей, такие ряды вполне можно ожидать в результатах 200 произвольно выбранных бросков. И все же многим это кажется удивительным. В итоге, когда за последовательностью X и О стоят не результаты бросков монеты, а некие события, влияющие на жизнь, люди ищут весомые причины возникновения этих закономерностей. Когда ряд О обозначает достижения вашего любимого спортсмена, вы охотно верите комментатору, который убедительно вещает об удачной полосе в карьере игрока. И когда X и О обозначают ряд провалившихся один за другим фильмов кинокомпаний «Парамаунт» и «Коламбия Пикчерз», все понимающе кивают, потому что бульварная пресса уже назвала ту, которая способна заинтересовать зрителей во всем мире.
Много усилий затрачивается на изучение моделей случайного успеха на финансовых рынках. Например, есть много доказательств того, что динамика котировок акций случайна или близка к случайной, а без доступа к внутренней информации и с учетом затрат на заключение сделок или управление инвестиционным портфелем вы не сможете заработать ни на каких отклонениях от произвольности{198}. Тем не менее на Уолл-стрит есть давняя традиция привлекать экспертов-аналитиков, чья средняя зарплата в конце 90-х гг. XX в. составляла порядка 3 млн долларов{199}. Чем же занимаются эти аналитики? По результатам исследования 1995 г., из двенадцати самых высокооплачиваемых «суперзвезд Уолл-стрит», приглашенных деловым изданием «Барронс», чтобы те за ежегодным круглым столом дали рекомендации по игре на рынке, восемь совпали лишь в прогнозе средне-рыночной доходности{200}. Из исследований 1987 и 1997 гг. стало ясно: акции, рекомендованные аналитиками в телевизионном шоу «Неделя Уолл-Стрит», показали гораздо худшую динамику, сильно отстав от средних значений по рынку{201}. Проанализировав 153 информационных бюллетеня, ученый из Гарвардского института экономических исследований не обнаружил «никаких весомых доказательств того, что существуют способности удачно подбирать объект для инвестиций»{202}.
Ознакомительная версия.