My-library.info
Все категории

Павел Власов - Беседы о рентгеновских лучах (второе издание)

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Павел Власов - Беседы о рентгеновских лучах (второе издание). Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Беседы о рентгеновских лучах (второе издание)
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
30 январь 2019
Количество просмотров:
113
Читать онлайн
Павел Власов - Беседы о рентгеновских лучах (второе издание)

Павел Власов - Беседы о рентгеновских лучах (второе издание) краткое содержание

Павел Власов - Беседы о рентгеновских лучах (второе издание) - описание и краткое содержание, автор Павел Власов, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Казалось бы, рентгеновские лучи изучены и описаны столь полно, что о чем-то новом, интересном, тем более загадочном тут не может быть и речи. Но, как ни странно, они все еще остаются таинственными невидимками, хотя исследуются с 1895 года. В мире звезд и атомов, клеток и организмов всюду есть место поискам, призванным решить вопросы, а то и головоломные уравнения со многими неизвестными, относящимися к рентгеновской радиации. Таков лейтмотив книги доктора медицинских наук П. Власова.Автор fb2-версии разбил документ на главы, согласно разделу «Содержание» книги. Это сделано исключительно с целью упростить навигацию по тексту.

Беседы о рентгеновских лучах (второе издание) читать онлайн бесплатно

Беседы о рентгеновских лучах (второе издание) - читать книгу онлайн бесплатно, автор Павел Власов

Однако и скептики подняли голос. «Даже определение абсолютно точных и строгих правил узнавания буквы А во всех видах, встречающихся хотя бы в печатном тексте, — грандиозная задача», — напомнил американский математик У. Питтс и выразил сомнение, что ее вообще удастся когда-либо решить. А профессор М. Таубе (тоже США) в книге «Компьютеры и здравый смысл.

Миф о думающих машинах» (1961 г,) высказался со всей прямотой: «Энтузиастам вычислительных машин следует либо прекратить болтовню об этом, либо принять на себя серьезное обвинение в том, что они сочиняют научную фантастику с целью пощекотать читателям нервы в погоне за легкими деньгами и дешевой популярностью».

Что же получилось?

Еще в 1957 году родился «Марк-1». Так был назван перцептрон автоматический зрительный анализатор, построенный Ф. Розенблаттом (США) и ставший первой из немногих технических моделей восприятия.

В дальнейшем распознавание образов моделировалось преимущественно математически на цифровых электронно-вычислительных машинах. Появились компьютеры, которые анализировали снимки звездного неба и ядерных реакций.

В 60-х годах «узнающие» программы были составлены и успешно испытаны в СССР. Один из инициаторов этих работ, М. Бонгард, так комментировал результаты, полученные при его участии: «Пишущие о кибернетике любят заканчивать статью заклинанием: раз человек составил программу, значит, он передал ей часть своих знаний; посему-де машина никогда не будет умнее своего создателя. Про автомат, узнававший нефтеносность пластов, никак не скажешь, что программисты передали ему свои знания: ведь мы ничего не понимали в геологии! Откуда же программа получила все необходимые сведения? Только благодаря наблюдению и, если хотите, „творческому осмыслению“ примеров, продемонстрированных при обучении. Становится понятной роль хороших „машинных педагогов“. Благодаря им универсальная программа получила специализацию в геофизике А могла приобрести ее в медицинской диагностике или в промышленной дефектоскопии».

Компьютеры нашли свое место и в рентгенологии.

Они применяются при статистической обработке материалов клинико-рентгенологических исследований, с их помощью можно устанавливать взаимосвязь между признаками, выявляя таким образом причину и следствие; электронно-вычислительные машины уже ставят диагнозы. Наконец, предпринимаются настойчивые попытки применить ЭВМ для анализа флюорограмм, отбирать из огромного их количества те, которые заставляют подозревать болезнь. Такая предварительная сортировка значительно облегчает работу врача: ему остается просмотреть лишь 0,01 первоначального количества снимков.

Результаты пока, честно говоря, довольно скромные.

Но нельзя забывать, сколь нелегкое это дело — распознавание болезней методами рентгенодиагностики. Формализовать его для машины необычайно трудно: не обладая интуицией, она требует детальнейших инструкций, расписывающих каждый логический шаг.

Впрочем, работа продолжается, и небезуспешно. Появилось уже несколько диагностических алгоритмов.

В их основе различные формы логики — детерминистская, вероятностная, эвристическая. Первая (ее название происходит от латинского «определенный») позволяет с самого начала отсечь явно негодные варианты. Круг возможных заболеваний резко сужается. Но какое же из них у пациента?

Начинается вероятностный анализ. Отбираются наиболее правдоподобные гипотезы. Получается целый ряд возможных недугов. Но какой именно у данного человека при данных симптомах? Прибегают к дополнительному, уточняющему обследованию. Оно снова сужает круг предположений, переводит диагностику опять на детерминистскую основу.

Есть еще эвристический алгоритм. Он сочетает элементы человеческого мышления и машинной формальной логики. Это, пожалуй, самый многообещающий принцип: роботово — роботу, а человеку — человеческое.

Машина механически перебирает все имеющееся в ее памяти множество признаков. Человеческое мышление более экономно. Врач оперирует, как правило, малым набором признаков, зато использует множество конъюнкций (соответствий, взаимосвязей между признаками). Перебирая многие комбинации признаков, он сразу же отбрасывает наименее вероятные варианты и сосредоточивается на наиболее вероятных. Здесь человек намного превосходит машину, хотя и страдает такими недостатками, как субъективизм, неполнота информации, отсутствие жесткой диагностической логики, широкая индивидуальная вариабельность…

В век ЭВМ мы по-новому начинаем смотреть на старый метод познания аналогию. Метод аналогии, или метод поиска прецедента заключается в сравнении одного случая неизвестного класса с другим, известным, случаем.

На фоне могучих соперников — индукции и дедукции — аналогия всегда считалась чем-то вроде Золушки.

К ней прибегали в тех случаях, когда личного или коллективного опыта недоставало. Да, если уж говорить честно и откровенно, познание от частного к частному не могло считаться полноценным в силу скромных возможностей человеческой памяти и мимолетности человеческой жизни. Не может опыт одного человека быть достаточным для того, чтобы в каждой конкретной ситуации, требующей принятия решения, удалось вспомнить подобный случай из своей практики. Вот почему неубедительно звучат слова доктора, пусть даже убеленного сединами: «А помните, у нас был подобный случай…» или «Я помню…»

Аналогией в теории познания называется умозаключение, в котором вывод делается на основании сходства между объектами без достаточного исследования всех условий. В медицине это означает диагностику по сходству некоторых признаков. А так как многие заболевания проявляются похожими сочетаниями признаков — синдромами, то бывают ошибки. Пользуясь аналогией, врач иногда выделяет сходство по некоторым формальным, несущественным признакам, не учитывая различия по признакам, которые, хотя и слабо выражены, или вообще не выявлены, но являются главными, отражающими сущность заболевания.

Иное дело ЭВМ. В память машины можно занести огромное количество наблюдений из практики. Проявления болезней многообразны, но это многообразие не бесконечно, оно лимитировано определенными вариантами, поддающимися учету и программированию.

Существование динамических стереотипов в деятельности головного мозга доказал великий русский физиолог И. Павлов, а затем канадский ученый Г. Селье блестяще подтвердил это примерами из области патогенеза заболеваний.

Если вариабельность проявлений болезней не беспредельна, при достаточном объеме памяти обязательно встретится точно такой же случай. Только человек на протяжении своей жизни не в состоянии накопить и помнить такое количество наблюдений, которое позволило бы ему на все случаи жизни найти в своей памяти точно такой же достоверно подтвержденный случай.

А машина может.

Мышление рентгенолога на пути к диагнозу проходит по крайней мере четыре этапа. Первый — условно назовем скиалогическим, когда оценивается качество изображения, определяется изучаемый орган, проекция и методика исследования. Второй — семиотический, когда происходит поиск симптомов заболевания. Третий этап — синдромный. Из обнаруженных симптомов формируется модель синдрома, иначе говоря, модель неизвестной пока болезни, которую нужно отнести к определенному классу заболеваний. Четвертый этап нозологический, на котором наконец определяется, какому недугу отвечает данный комплекс признаков.

Давно было известно, что одна и та же болезнь может проявляться разными вариантами, именуемыми масками, то она походит на одно заболевание, то на другое, то на третье, словом, на все, что угодно, только не на самое себя, — поди тут разберись.

Диагностируя новый случай, врач, почти не задумываясь, примеряет его не ко всей абстрактной модели болезни рака, туберкулеза или ревматизма, а именно к тому варианту, который похож на его случай. И вот когда начались первые попытки использования ЭВМ для диагностики заболеваний, то на первых порах в память машины стали заносить усредненные модели заболеваний, сваливая в кучу все разнообразные проявления болезней, получалась своеобразная абракадабра.

Возьмем, к примеру, рак легкого. Одна его форма похожа на воспаление легких, другая на кисту. Смешай их вместе, получится какая-то кистопневмония, то есть нечто несуразное.

Машину обвиняли в неспособности поставить диагноз, а виновата не машина, а учитель, заложивший в нее неверную информацию. Попробовали разделить заболевание на несколько синдромов — дело пошло лучше.

Вот, оказывается, в чем собака зарыта: мешал информационный шум.

Неудачи машинной диагностики и их осмысливание привели к формированию нового направления медицины — изучению и формированию синдромов в каждом заболевании. Оно оказалось очень плодотворным и одним из самых перспективных научных направлений современной клинической медицины. Для рентгенологии это означало переход от описательно-феноменологического уровня на более высокий корреляционный уровень.


Павел Власов читать все книги автора по порядку

Павел Власов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Беседы о рентгеновских лучах (второе издание) отзывы

Отзывы читателей о книге Беседы о рентгеновских лучах (второе издание), автор: Павел Власов. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.