My-library.info
Все категории

Айдан Бен-Барак - Почему мы до сих пор живы? Путеводитель по иммунной системе

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Айдан Бен-Барак - Почему мы до сих пор живы? Путеводитель по иммунной системе. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Почему мы до сих пор живы? Путеводитель по иммунной системе
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
272
Читать онлайн
Айдан Бен-Барак - Почему мы до сих пор живы? Путеводитель по иммунной системе

Айдан Бен-Барак - Почему мы до сих пор живы? Путеводитель по иммунной системе краткое содержание

Айдан Бен-Барак - Почему мы до сих пор живы? Путеводитель по иммунной системе - описание и краткое содержание, автор Айдан Бен-Барак, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Известно, что везде и всюду нас подстерегает несметное множество невидимых глазу бактерий и вирусов, только и ждущих удобного случая, чтобы проникнуть внутрь нашего организма. Большая часть из них – возбудители опасных и тяжких болезней. Но удивительное дело – мы до сих пор живы! А спасает нас от всей этой нечисти наша иммунная система. О том, как она устроена, что в нее входит и как она работает, что такое вакцины и иммунитет, как бороться с аллергией и что придет на смену антибиотикам, рассказывает в своей увлекательной книге микробиолог и историк науки Айдан Бен-Барак.В формате pdf A4 сохранен издательский дизайн.

Почему мы до сих пор живы? Путеводитель по иммунной системе читать онлайн бесплатно

Почему мы до сих пор живы? Путеводитель по иммунной системе - читать книгу онлайн бесплатно, автор Айдан Бен-Барак

Ну ладно. Я прочел статью, сделал резюме главных результатов, изложенных в ней, и решил поискать более свежие работы по данному вопросу, чтобы в своем докладе дать нужный контекст, как положено всякому прилежному студенту. Тут-то я и столкнулся с трудностями. Что-то было не так, хоть я и не мог понять, что именно. В статьях, которые я читаю, сообщаются странные вещи, которые не очень-то вписываются в мой доклад. Прошло несколько недель, полных разочарований, и наконец я сообразил, в чем причина моего смущения: эти статьи казались мне странными, потому что они решительно противоречили тому, что содержалось в статье из Nature, которую мне дали. Дело в том, что ТПР-2 вообще не обнаруживает ЛПС, а обратное утверждение – ошибка. В действительности ЛПС обнаруживается другим толл-подобным рецептором – ТПР-4. Я знаю, что с виду это не очень-то важное заявление, но в 2011 году этот маленький фактик удостоился Нобелевской премии по физиологии и медицине.

Экспериментаторы, представившие ту публикацию в Nature, оказались недостаточно тщательны. Они использовали недостаточно очищенный раствор липополисахарида, содержащий весьма небольшое количество других бактериальных компонентов, которые и вызвали отклик ТПР-2. Наш преподаватель, этот хитрый старикан, нарочно дал ошибочную статью, чтобы показать: научные работы не всегда непогрешимы, в них случаются просчеты, это неизбежно в науке (я так и не решился сказать ему, что это, по-моему, был с его стороны блестящий педагогический прием).

Та статья не была каким-то намеренно сенсационным материалом, творчески перевранным в колонке «Новости науки» местной газетенки. Нет, речь шла о серьезном исследовании уважаемых специалистов, опубликованном не где-нибудь, а в Nature. И оно оказалось ошибочным. Я не сразу избавился от содрогания при мысли о том, что было бы, если бы я не выяснил подробности. Я мог бы сделать доклад, утверждая, что в статье все верно, и выставил бы себя на посмешище, а мне этого наверняка не спустили бы. Исследования, даже те, что публикуются в престижных журналах, могут порождать – и порождают – ошибки. Рано или поздно об этом так или иначе узнаёт каждый ученый, так что мне еще повезло: я узнал об этом в университетской аудитории, а не позже, в мире настоящих научных изысканий.

Эта маленькая история не только преподает нам едва ли не самый важный для науки урок, какой я только могу себе представить, но и знакомит нас с толл-подобными рецепторами, а кроме того, служит своего рода метафорой, описывающей роль этих самых рецепторов и их собратьев: система врожденного иммунитета должна быть постоянно настороже, чтобы всегда вовремя сообщать, когда что-то не в порядке, вынюхивать подозрительное и передавать эту информацию по назначению. Невнимательности нам не спустят.

Чего не увидел микроб

В предыдущих главках я показал, что испытывают микробы-завоеватели, приходя в соприкосновение с нашим телом. Как только это происходит, вокруг них начинаются сложнейшие процессы идентификации и принятия решений: в дело вступает система врожденного иммунитета. Она должна отличать собственные клетки и компоненты нашего тела (которые имеют полное право находиться там, где они находятся) от чужеродных (которые такого права, в общем-то, не имеют) – и реагировать соответствующим образом. Кроме того, она должна сообщить нужным подсистемам как можно больше о природе и уровне угрозы.

Среди ключевых элементов иммунной системы – большой набор разнообразных молекул-рецепторов. Каждый вид рецепторов настроен на свой определенный сигнал. Эти молекулы имеют различную форму и размеры, но, поскольку их задачей является распознавание патогенов, они обобщенно именуются рецепторами распознавания патогенов, или РРП. Они действуют как система раннего предупреждения. При вторжении в организм чужеродных объектов РРП первыми должны идентифицировать их и активировать первичный иммунный отклик. Их реакция влияет также на адаптивный иммунный отклик, о котором я тоже вскоре расскажу.

ТПР-2, над которыми я столько ломал голову, как раз относятся к разряду таких РРП. Они входят в почтенное и весьма полезное семейство ТПР[18]. Самые разные иммунные клетки по всему нашему телу имеют ТП-рецепторы, в том числе кардиомоноциты сердца, эндотелиальные клетки кожи, эпителиальные клетки кишечника и многие другие.

ТП-рецепторы идентифицируют разнообразные объекты, объединенные общими свойствами: 1) такие объекты специфичны для микроорганизмов и не присутствуют в клетках организма-хозяина, то есть в данном случае – человека; 2) они обычно имеются у широкого диапазона микроорганизмов; 3) они жизненно необходимы для существования микроорганизма, поэтому не может появиться некий «ускользающий мутант» (микроорганизм, в котором имеет место мутация, заставляющая его утратить выдающий его преступный фрагмент и тем самым избежать распознавания ТП-рецепторами). Рискуя перегрузить аббревиатурами ваш усталый мозг, все же сообщу, что эти фрагменты микробов, запускающие сигнал тревоги у нас в организме, обобщенно именуются патоген-ассоциированными молекулярными образами (сокращенно – ПАМО).

ПАМО может быть чем угодно, что обычно имеется у бактерий (или у вирусов), но не у человека: скажем, частью бактериальной клеточной стенки, или определенным фрагментом ДНК, или даже каким-то белком, который есть лишь в жгутиках бактерий. Одни и те же ПАМО зачастую распознаются иммунными системами млекопитающих, беспозвоночных и даже растений. К сожалению, они не специфичны для одних только опасных патогенов и свойственны также бактериям-симбионтам, а значит, должен существовать физический барьер (или какое-то другое средство защиты) между клетками организма-хозяина, которые ощетинились ТП-рецепторами, и микрофлорой тела, иначе наш организм постоянно атаковал бы собственные полезные микроорганизмы.

Как только молекула ТПР, расположенная на внешней поверхности клетки системы врожденного иммунитета, идентифицирует бактериальный фрагмент, она посылает сигнал во внутреннюю часть этой иммунной клетки, которая тут же активируется. Дальнейшее зависит от ее природы. Если это фагоцит, он готовится поймать и съесть бактерию. Но у других клеток врожденной иммунной системы другие роли. Дело усложняется, так что я избавлю нас от деталей, большинства терминов и сокращений. Попросту говоря, компоненты иммунной системы обмениваются между собой настоящей лавиной молекулярных сигналов, сообщая: 1) о том, что в организм проникла инфекция; 2) о том, где это происходит. Все одновременно общаются со всеми[19]. Клетки и молекулы сбегаются на место битвы. Другие иммунные клетки хватают куски разорванных ими бактерий – или же те куски, которые они обнаружили плавающими поблизости, – и отправляются в лимфатические узлы. Сотни таких узлов распределены по всему телу. Особенно их много в районе шеи, подмышек, груди, живота и паха. Там, в лимфоузлах, можно будет оценить специфику инфекции и принять решение об адекватном ответе.

Если почитать работы по иммунологии, особенно сравнительно давние, складывается впечатление, что отклик системы врожденного иммунитета – это какой-то «младший брат-дурачок». Он считается… нет, не совсем глупым, но каким-то простеньким, менее специфичным, будничным механизмом. Я говорил о клетках и рецепторах, которые улавливают широко распространенные сигналы и откликаются единообразно. Они хорошо подходят для легких случаев и мостят дорогу для настоящего иммунного отклика, который дает зрелая, тонко настроенная адаптивная иммунная система.

Но тут сделаем оговорку. Как позволяют предположить недавние исследования, организм все-таки куда гибче, изобретательнее и вообще интереснее, чем мы привыкли думать. Похоже, интегрируя комбинации сигналов от различных своих рецепторов, иммунные клетки действительно могут установить, какого рода ПАМО содержатся в окружающей их среде: плавающие там и сям кусочки разорванных бактерий, или неотделенные части погибших (но целых) бактерий, или фрагменты живых и неопасных бактерий[20], или же фрагменты живых и опасных бактерий[21]. Каждая из перечисленных разновидностей ПАМО представляет угрозу все более высокого уровня и требует своего уровня отклика. И система врожденного иммунитета отвечает и, как правило, весьма достойно. И стабильно.

Кое-какая специфика

Пока я описывал довольно-таки универсальный, неспецифичный иммунный отклик. Организм обнаруживает: что-то не в порядке, чужеродные существа находятся там, где им не следует быть. В результате активируется неспецифический иммунный отклик. Как я уже говорил, зачастую этого достаточно: система врожденного иммунитета берет на себя все заботы, и статус-кво замечательным образом восстанавливается. Однако если вторгающиеся захватчики чрезвычайно многочисленны и/или хитроумны и если система врожденного иммунитета с ними справиться не в состоянии, в дело вступает адаптивная иммунная система. Она именуется адаптивной, поскольку умеет адаптироваться (приспосабливаться, приноравливаться) к конкретному патогену.


Айдан Бен-Барак читать все книги автора по порядку

Айдан Бен-Барак - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Почему мы до сих пор живы? Путеводитель по иммунной системе отзывы

Отзывы читателей о книге Почему мы до сих пор живы? Путеводитель по иммунной системе, автор: Айдан Бен-Барак. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.