My-library.info
Все категории

Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Квантовая вселенная. Как устроено то, что мы не можем увидеть
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
143
Читать онлайн
Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть

Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть краткое содержание

Джефф Форшоу - Квантовая вселенная. Как устроено то, что мы не можем увидеть - описание и краткое содержание, автор Джефф Форшоу, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
В этой книге авторитетные ученые Брайан Кокс и Джефф Форшоу знакомят читателей с квантовой механикой – фундаментальной моделью устройства мира. Они рассказывают, какие наблюдения привели физиков к квантовой теории, как она разрабатывалась и почему ученые, несмотря на всю ее странность, так в ней уверены.Книга предназначена для всех, кому интересны квантовая физика и устройство Вселенной.На русском языке публикуется впервые.

Квантовая вселенная. Как устроено то, что мы не можем увидеть читать онлайн бесплатно

Квантовая вселенная. Как устроено то, что мы не можем увидеть - читать книгу онлайн бесплатно, автор Джефф Форшоу

Прежде чем мы продолжим, нужно отметить, что давление, оказываемое квантовыми колебаниями, не зависит от температуры звезды. Важна только степень ее сжатия. Давление электронов будет несколько большим, потому что электроны «нормальным образом» перемещаются благодаря своей температуре, и чем жарче звезда, тем интенсивнее они перемещаются. Об этом источнике давления мы не стали говорить, потому что мало времени, а если бы пришлось его рассчитывать, мы бы выяснили, что он ничтожен по сравнению с гораздо большим квантовым давлением.

Итак, мы наконец-то можем вставить уравнение квантового давления в ключевое уравнение (1), которое стоит здесь повторить:



Однако все не так просто, как кажется, потому что нужно знать еще разницу давлений на верхнюю и нижнюю грани куба. Можно полностью переписать уравнение (1) относительно плотности внутри звезды, которая сама по себе меняется от места к месту внутри звезды (иначе бы вокруг куба не существовало никакой разницы давлений), а потом попытаться решить его, чтобы определить, как плотность изменяется с расстоянием от центра звезды. Но при этом придется решать дифференциальное уравнение, а математики такого уровня мы хотим избежать. Проявим изобретательность и предпочтем подольше подумать и поменьше посчитать, чтобы применить уравнение (1) для вывода взаимосвязи между массой и радиусом звезды – белого карлика.

Очевидно, что размер нашего кубика и его расположение внутри звезды совершенно произвольны, поэтому никакие выводы о самой звезде не могут зависеть от этих деталей. Начнем с того, что сделаем нечто совершенно бесполезное на первый взгляд.

Мы имеем возможность выразить размер и местонахождение нашего куба через размер всей звезды. Если R – радиус звезды, можно записать расстояние куба от центра звезды как r = aR, где a – просто безразмерное число между 0 и 1. Под безразмерностью мы понимаем то, что оно не соответствует никакой единице, это только численный показатель. Если a = 1, то куб находится на поверхности звезды, а если a = ½, куб расположен строго посередине. Точно так же можно выразить размер куба через радиус звезды. Если L – длина стороны куба, мы можем записать L = bR, где b – это опять же только численный показатель, который должен быть очень мал, если наш куб мал относительно звезды. Здесь нет абсолютно ничего сложного, так что на этом этапе все должно казаться настолько простым, что записывать, кажется, даже бесполезно.

Заметим только, что использовать расстояние R совершенно естественно, потому что нет других относящихся к белому карлику расстояний, которые могли бы представлять сколь-нибудь разумную альтернативу.

Мы можем продолжать свои «бессмысленные» занятия и выразить плотность звезды в месте нахождения куба через среднюю плотность звезды. Запишем, что ρ = fρ̅, где f – опять же просто численный показатель, а ρ̅ – средняя плотность звезды. Как мы уже указывали, плотность куба зависит от его положения внутри звезды – чем ближе к центру, тем больше плотность. Так как средняя плотность ρ̅ от положения куба не зависит, зависимость должен обнаруживать показатель f, который, таким образом, зависит от расстояния r, а следовательно, и от произведения aR. И это ключевая информация, лежащая в основе всех наших последующих вычислений: f – это чистое число, а R – не чистое число, а результат измерения расстояния. И f может зависеть только от a, а никак не от R. Это очень важный результат, потому что он свидетельствует, что плотность белого карлика «не зависит от масштаба». Это значит, что плотность изменяется на радиусе независимо от величины этого радиуса. Например, плотность в точке, расположенной на ¾ расстояния от центра до поверхности звезды, будет совершенно одинаковой в любом белом карлике независимо от его размера. Есть два способа оценки этого исключительно важного результата, и мы решили, что приведем здесь оба. Один из нас объясняет это так: «Дело в том, что любая безразмерная функция от r (а f – это именно она) может быть только безразмерной, так как это функция безразмерной переменной, а единственная безразмерная переменная в нашем случае – это r / R = a, поскольку R – единственная величина, связанная с расстоянием, из находящихся в нашем распоряжении».

Второй соавтор считает более четким следующее разъяснение: «f может в принципе по-разному сложным образом зависеть от r – расстояния кубика от центра звезды. Но давайте представим, что эти величины прямо пропорциональны, то есть fr. Иными словами, f = Br, где B – константа. Здесь самое важное то, что f – чисто численный показатель, в то время как r измеряется, например, в метрах. Отсюда следует, что B должно измеряться в 1/м, чтобы единицы расстояния взаимно сокращались. Итак, что нужно выбрать для B? Мы не можем назначить нечто произвольное, например «1 обратный метр», поскольку это бессмысленно и никак не связано со звездой. Почему, например, не выбрать один обратный световой год, получив совершенно другой ответ? Единственное расстояние, с которым мы имеем дело, – это R, физический радиус звезды, так что придется использовать его, чтобы f всегда оставалось чистым числом. Это значит, что f может зависеть только от r / R. Вы, наверное, уже поняли, что тот же вывод можно было сделать, если бы мы начали с предположения, что, например, fr²». Собственно, ровно то же говорил и первый соавтор, только сейчас вышло длиннее.

Это значит, что можно выразить массу нашего кубика размером L и объемом L³, находящегося на расстоянии r от центра звезды, в виде Mcube = f(a)L³ρ̅. Мы написали f(a), а не просто f, чтобы не забывать, что f на деле зависит от нашего выбора a = r / R, а не от каких-то масштабных свойств звезды. Тот же аргумент можно использовать при указании, что мы можем записать Min = g(a)M, где g(a) – это опять же только функция от a. Например, функция g(a), высчитанная для a = ½, подсказывает, какое количество массы звезды приходится на сферу с радиусом, равным половине радиуса всей звезды, и это количество неизменно для всех белых карликов независимо от их радиуса по причине, приведенной в предыдущем абзаце[61]. Вы могли заметить, что мы постоянно избавляемся от тех символов, которые встречаются в уравнении (1), заменяя их безразмерными величинами (a, b, f и g), помноженными на величины, зависящие только от массы и радиуса звезды (средняя плотность звезды определяется через M и R, поскольку ρ̅ = M / V и V = 4πR³ / 3, объем сферы). В довершение нужно сделать то же самое для разницы давлений, которую мы благодаря уравнению (4) можем записать как Pbottom – Ptop = = h(a, b)κρ̅5/3, где h(a, b) – безразмерная величина. То, что h(a, b) зависит одновременно от a и b, связано с тем, что разница давлений зависит не только от местоположения куба (представленного a), но и от его объема (представленного b): у более крупных кубов больше разница давлений. Самое важное здесь то, что, как и f(a), и g(a), h(a, b) не может зависеть от радиуса звезды.

Мы можем воспользоваться только что выведенными выражениями и переписать уравнение (1):



Кажется, что в уравнении царит хаос; непохоже, чтобы уже на следующей странице мы пришли к результату. Главное – заметить, что уравнение выражает отношения между массой звезды и ее радиусом – конкретная зависимость между ними уже нащупывается (или на виду, но чудовищно далека – в зависимости от вашего уровня владения математикой). После введения в наше хаотическое уравнение средней плотности звезды (то есть ρ̅ = M / (4πR³ / 3)) оно принимает следующий вид:



где



Теперь λ зависит только от безразмерных величин a, b, f, g и h, а следовательно, не зависит от величин, которые описывают звезду в целом, M и R, а следовательно, λ должна иметь одно и то же значение для всех белых карликов.


Джефф Форшоу читать все книги автора по порядку

Джефф Форшоу - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Квантовая вселенная. Как устроено то, что мы не можем увидеть отзывы

Отзывы читателей о книге Квантовая вселенная. Как устроено то, что мы не можем увидеть, автор: Джефф Форшоу. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.