Рис. 2.3. В реальности удары электронов по экрану не связаны со щелями. Вместо этого формируется структура из полосок, которая выстраивается постепенно, электрон за электроном
Представьте цистерну с водой, у которой наполовину опущена стенка с вырезанными в ней двумя щелями. Экран и камеру можно заменить детектором высоты волн, а провод под напряжением – чем-то, создающим волны, например, деревянной доской, положенной вдоль цистерны и снабженной мотором, который заставляет ее погружаться в воду и выныривать. Созданные таким образом волны будут двигаться по поверхности воды, пока не достигнут стенки. Когда волна ударится о стенку, большая ее часть откатится, но два небольших фрагмента пройдут сквозь щели. Эти две образовавшиеся волны расходятся от щелей по направлению к детектору высоты волн. Заметьте, мы говорим здесь «расходятся», потому что волны отходят от щелей не по прямой. Щели становятся двумя источниками новых волн, каждая из которых расходится увеличивающимися полукругами. Рис. 2.4 показывает, что же происходит.
Рис. 2.4. Вид сверху на волны, возникающие из двух точек в цистерне (в верхней части рисунка). Две расходящиеся кругами волны перекрываются и интерферируют. «Спицы» – это те области, где две волны погасили друг друга, и вода осталась спокойной
Этот рисунок – отличная визуальная демонстрация поведения волн воды. Есть области, где волны не возникают вовсе, и кажется, что они отходят от щелей, как спицы от центра колеса, в то время как другие области покрыты взлетами и падениями волн. Параллели со структурой, которую наблюдали Дэвиссон, Джермер и Томсон, поразительны. Вернувшись к электронам, ударяющим в экран, мы видим, что те области, где обнаруживается мало электронов, соответствуют местам в цистерне, где поверхность воды остается спокойной, то есть тем самым спицам, которые отходят от щелей на рисунке.
Довольно легко объяснить, почему такие спицы появляются в цистерне: дело в смешении и слиянии волн, распространяющихся из щелей. Поскольку волны имеют свои взлеты и падения, то две волны при встрече могут «складываться» или «вычитаться». Если встреча двух волн происходит на взлете одной волны и падении другой, происходит взаимное погашение, и волны в этой точке не будет. В иных случаях волны могут соединяться друг с другом на взлете – в этом случае они образуют более крупную волну. В каждой точке цистерны расстояние между ней и двумя щелями немного разнится, а следовательно, в каких-то местах две волны будут соединяться на своих пиках, в других одна будет на взлете, а другая на спаде, а в большинстве точек соединение будет происходить в каких-то сочетаниях между этими двумя крайними точками. В результате получится чередование – интерференционная картина, или фигура.
При всей наглядности картины понять, что электроны тоже образуют интерференционную фигуру – а это экспериментально наблюдаемый факт, – очень трудно. Согласно Ньютону, а также здравому смыслу, электроны испускаются из источника, направляются по прямым линиям в сторону щелей (поскольку на них не действуют никакие силы – вспомните первый закон Ньютона), проходят сквозь щели с небольшими искривлениями (если цепляют кромку) и продолжают двигаться по прямой вплоть до экрана. Но в таком случае интерференционная фигура не появится – получится пара полосок, как показано на рис. 2.2.
Можно предположить, что существует какой-то хитрый механизм, посредством которого электроны оказывают друг на друга некое воздействие, в результате чего отклоняются от прямых линий, пройдя через щели. Но это легко проверить: можно поставить эксперимент, посылая из источника на экран всего один электрон зараз. Придется подождать – и медленно, но верно, когда электроны один за другим будут врезаться в экран, выработается система полосок. Это крайне удивительно, потому что структура полосок весьма характерна для интерферирующих друг с другом волн, но ведь наш источник испускает зараз по одному электрону – точку за точкой. Хорошее упражнение для ума: попытаться представить, как такое может быть и почему частица за частицей формируют интерференционную фигуру при выстреле в сторону двух щелей в экране. Упражнение тем лучше, что оно совершенно бесплодно: несколько часов ломания головы должны убедить вас, что представить появление структуры полосок совершенно невозможно. Какими бы ни были испускаемые частицы, они точно не «обычные» частицы. Электроны словно бы «интерферируют сами с собой». Наша задача – создать теорию, которая может объяснить происходящее.
У этой истории есть интереснейшее историческое завершение, которое показывает, какие проблемы интеллектуального плана ставит двухщелевой эксперимент. Джозеф Томсон, получивший Нобелевскую премию за открытие электрона в 1899 году, показал, что электрон – это частица с определенным электрическим зарядом и определенной массой, маленькая песчинка материи. Его сын Джордж Томсон 40 лет спустя получил Нобелевскую премию за доказательство того, что электрон ведет себя не так, как ожидал его отец. Томсон-старший не был неправ: у электрона действительно есть четко определенная масса и электрический заряд, и каждый раз, когда мы его видим, он кажется нам крупинкой материи. Однако он не ведет себя в точности как крупинка материи, что обнаружили Дэвиссон, Джермер и Томсон-младший. Важно заметить, что не ведет он себя и в точности как волна, потому что интерференционная фигура не формируется каким-то плавным добавлением энергии; скорее, она состоит из множества мельчайших точек. Мы всегда можем обнаружить точечные электроны, какими представлял их Томсон-старший.
Возможно, вы уже видите необходимость прибегнуть к предложенному Гейзенбергом способу мышления. То, что мы наблюдаем, – это частицы, поэтому нужно создавать теорию частиц. Наша теория должна к тому же уметь предсказывать появление интерференционных фигур, получающихся, когда электроны один за другим проходят сквозь щели и врезаются в экран. Подробностей того, как электроны движутся от источника к щелям и затем к экрану, мы наблюдать не можем, поэтому им необязательно согласовываться с тем, с чем мы имеем дело в повседневной жизни. И действительно, о «путешествии» электрона можно даже вообще не вести речь. Все, что нам нужно, – выработать теорию, способную предсказать, что электроны при контакте с экраном образуют фигуру, которая получается в ходе двухщелевого эксперимента. Это мы и сделаем в следующей главе.
Чтобы вы не думали, что это просто увлекательный образчик физики микромира, который имеет мало отношения к миру в целом, нужно сказать, что квантовая теория частиц, которую мы разрабатываем для объяснения двухщелевого эксперимента, окажется способной объяснить и стабильность атомов, и цвет лучей, испускаемых химическими элементами, и радиоактивный распад, да, собственно, и все великие тайны, волновавшие ученых в начале XX века. То, что наша система описывает способ поведения электронов, заключенных внутрь материи, позволит понять и то, как работает едва ли не самое важное изобретение XX века – транзистор.
В самой последней главе этой книги мы увидим поразительное применение квантовой теории, демонстрирующее силу научной аргументации. Самые необычные предсказания квантовой теории обычно проявляются в поведении малых объектов. Но поскольку большие объекты состоят из малых, при определенных обстоятельствах квантовая физика требуется для объяснения свойств одних из самых крупных объектов во Вселенной – звезд. Наше Солнце ведет постоянную борьбу с силой притяжения. Этот газовый шар, в три миллиона раз более массивный, чем наша планета, обладает силой притяжения почти в 28 раз больше, чем Земля, что ставит его под постоянную угрозу коллапса. Ситуация предотвращается направленным вовне давлением, которое создают реакции ядерного синтеза в самом солнечном ядре, где ежесекундно 600 000 000 т водорода превращаются в гелий. Но как бы ни была велика наша звезда, столь интенсивное сжигание топлива должно иметь свои последствия, и в один прекрасный день источник топлива на Солнце прекратит свое существование. Давление, направленное вовне, прекратится, и железной хватке гравитации нечего будет противопоставить. И тогда, кажется, ничто во Вселенной не сможет предотвратить катастрофу.
На самом же деле в игру вступит квантовая физика и решит проблему. Звездам придут на помощь квантовые эффекты: они станут так называемыми белыми карликами – таков и будет финал нашего Солнца. В конце этой книги мы применим понимание квантовой механики для расчета максимальной массы звезды – белого карлика. Впервые ее рассчитал в 1930 году индийский астрофизик Субраманьян Чандрасекар, и выяснилось, что эта масса составляет примерно 1,4 массы Солнца. Как ни удивительно, это число можно получить, зная лишь массу протона и значения трех уже известных нам констант природы – гравитационной постоянной Ньютона, скорости света и постоянной Планка.