космоса на самых больших масштабах, чтобы обитаемость Вселенной повисла на волоске.
Возьмем хотя бы тяготение, силу, которая формирует крупномасштабную структуру Вселенной. Действие гравитации крайне слабое: требуется огромная масса Земли, чтобы удерживать нас на ее поверхности. Но будь сила всемирного тяготения чуточку больше, звезды сгорали бы быстрее и умирали бы раньше, не оставляя времени для развития сложных форм жизни ни на какой из планет, обращающихся вокруг них и согреваемых их теплом.
Или рассмотрим мельчайшие – в одну стотысячную долю градуса – вариации температуры реликтового излучения Большого взрыва. Будь они хоть немного больше – скажем, в одну десятитысячную долю градуса, – и зерна, из которых выросли космические структуры, разрослись бы в гигантские черные дыры, а не в галактики с миллионами пригодных для обитания звезд. И напротив, если бы эти вариации оказались чуть меньше – в одну миллионную градуса или еще меньше, – никаких галактик не могло бы образоваться вообще. Горячий Большой взрыв был ровно таким, каким надо. Тем или иным способом он вывел Вселенную на исключительно благоприятную для жизни траекторию, причем результаты такой «настройки» стали видны спустя несколько миллиардов лет. Как это объяснить?
Налицо и множество других примеров «счастливых совпадений». Мы живем во Вселенной с тремя измерениями пространства. Есть ли что-то особенное в том, что их именно три? Да, есть. Добавим еще одно измерение пространства – атомы и планетные орбиты станут неустойчивыми. Вместо того чтобы обращаться вокруг Солнца по устойчивой орбите, Земля по спирали врежется в него. У Вселенной с пятью или с еще большим числом измерений пространства проблем будет еще больше. С другой стороны, в мирах лишь с двумя пространственными измерениями могло бы не оказаться достаточно места для нормального функционирования сложных систем, как видно из рис. 3. Три измерения пространства – это, похоже, как раз столько, сколько нужно для того, чтобы жизнь была возможна.
Рис. 3. Во Вселенной, имеющей только два пространственных измерения, жизни трудно возникнуть, не говоря уж о том, чтобы развиваться. Как, например, в таком мире охотиться и питаться?
Необъяснимое дружелюбие, которое Вселенная проявляет к жизни, распространяется и на ее химические свойства, определяемые параметрами элементарных частиц и сил, действующих между ними. Например, нейтроны чуточку тяжелее протонов: отношение массы нейтрона к массе протона 1,0014. Будь это отношение обратным, все протоны во Вселенной после Большого взрыва очень скоро превратились бы в нейтроны. А без протонов не было бы атомных ядер – значит, не было бы ни атомов, ни самой химии.
Другой пример: образование углерода в звездах. Насколько нам известно, углерод очень важен для жизни. Но Вселенная не родилась с запасом углерода: он образуется в ходе ядерного синтеза в недрах звезд. В 1950-х британский космолог Фред Хойл заметил, что эффективность синтеза углерода из гелия в звездах основывается на хрупком равновесии между сильным ядерным взаимодействием, связывающим атомные ядра, и электромагнитной силой. И если бы сильное взаимодействие было бы на очень малую долю – всего на несколько процентов – сильнее или слабее, то энергии связи ядер изменились бы, синтез углерода замедлился, и Вселенная оказалась бы лишена углеродной жизни. Это казалось Хойлу настолько странным, что, по его словам, Вселенная выглядит результатом какой-то «подтасовки» – как будто «некий сверхразум взялся озорничать с физикой, а заодно и с химией, и с биологией» [6].
Но самой загадочной частью «тонкой настройки» Вселенной в пользу жизни выглядит ситуация с темной энергией. Измеренная нами плотность темной энергии крайне низка: в 10-123 раз меньше, чем та, которую многие физики склонны считать ее естественным значением. Но именно эта малость и заставила Вселенную оставаться «нерешительной» примерно восемь миллиардов лет, пока темной энергии не накопилось достаточно, чтобы ускорить расширение Вселенной. Уже в 1987 году Стивен Вайнберг указал, что если бы плотность темной энергии была хоть чуть-чуть больше, составив, скажем, 10-121, а не 10-123, то вызванные ею силы отталкивания были бы выше и подействовали бы раньше – и это опять-таки закрыло бы окно космических возможностей для образования галактик [7].
Короче говоря, как и подчеркивал Стивен в том нашем первом разговоре, все выглядит так, будто Вселенная каким-то образом специально подготовлена для появления в ней жизни. Знаменитый писатель и физик-теоретик Пол Дэвис имел в виду именно это, говоря о «космическом факторе Златовласки» [8]: «Как “правильная” тарелка с овсянкой в сказке о Златовласке и трех медведях, Вселенная в очень многих отношениях загадочным образом выглядит в точности “правильной” для жизни» [9]. И хоть это вовсе не значит, что космос должен прямо-таки кишеть жизнью, уже сама возможность ее зарождения во Вселенной в результате особенностей «тонкой настройки» доказывает, что эти особенности – не какие-то поверхностные, необязательные свойства мира. Нет, они глубоко встроены в законы физики, имеющие форму математических соотношений. Массы и другие параметры систем частиц, силы, управляющие их взаимодействиями, и даже общая структура Вселенной – все это кажется специально тщательно скроенным для того, чтобы поддерживать некоторую форму жизни. И это отражается в специфическом характере математических уравнений, определяющих то, что физики зовут законами Природы.
Итак, глубочайшая загадка «космологического замысла» состоит в том, что фундаментальные законы физики поразительно благоприятны для возникновения жизни – будто существует скрытый сценарий, в рамках которого в основные законы, управляющие Вселенной, вплетено наше существование. Это кажется невероятным. И это в самом деле невероятно! Что же это за сценарий?
Здесь я должен подчеркнуть всю необычность этой загадки для физиков-теоретиков. Обычно физики используют законы природы, чтобы описать то или иное явление или предсказать исход эксперимента. Кроме того, они пытаются обобщить существующие законы, чтобы объять ими более широкий диапазон природных явлений. Но вопросы о существовании «замысла» уводят нас по совсем другому пути, на котором нам приходится размышлять о природе и глубоком происхождении самих законов и о том, как мы вписываемся в их рамки. Волнующая суть космологии заключается в том, что она обеспечивает научный контекст, в котором мы можем надеяться пролить свет на эту величайшую из всех загадок. Ведь космология – единственная область физики, где мы сами оказываемся неотъемлемой частью задачи, которую пытаемся решить.
Исторически само видимое устройство мира принимается за свидетельство того, что все, что происходит в природе, имеет одну основную цель. Это воззрение восходит к Аристотелю, возможно, самому влиятельному из всех когда-либо живших философов. Глубокий биолог, Аристотель считал, что многие процессы, порождающие и организующие мир живого, кажутся полными умысла и намерения. Если лишенные разума живые организмы имеют жизненную программу, рассуждал он, то должна существовать и Конечная Цель, направляющая развитие космоса как целого. Телеологическая