My-library.info
Все категории

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
205
Текст:
Ознакомительная версия
Читать онлайн
РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров читать онлайн бесплатно

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно, автор РАЛЬФ РАЛЬФ ВИНС
Конец ознакомительного отрывкаКупить книгу

Ознакомительная версия.

Прежде чем решать систему уравнений, необходимо задать уровень ожидаемой прибыли Е. Решением будет комбинация весов, которая даст искомое Е при наименьшей дисперсии. После того как вы определитесь с выбором Е, у вас бу­дут все входные переменные, необходимые для построения матрицы коэффи­циентов.

Переменная Е в правой части первого уравнения — это значение прибыли. для которой вы хотите определить комбинацию ценных бумаг в портфеле. Первое уравнение говорит о том, что сумма всех ожидаемых прибылей, умноженных на

соответствующие веса, должна равняться заданному Е. Второе уравнение отража­ет тот факт, что сумма весов должна быть равна 1. Была показана матрица для слу­чая с тремя ценными бумагами, но вы можете использовать обобщенную форму для N ценных бумаг.

Возьмем ожидаемые прибыли и ковариации из уже известной таблицы ковариаций и подставим коэффициенты в обобщенную форму. Таким образом из ко­эффициентов обобщенной формы можно создать матрицу. В случае четырех ком­понентов (N = 4) мы получим 6 рядов (N + 2):




X1 X2 X3 X4 L1 L2 Ответ 0,095 0,13 0,21 0,085 Е 1 1 1 1 1 0,1 - 0,0237 0,01 0 0,095 1 0 - 0,0237 0,25 0,079 0 0,13 1 0 0,01 0,079 0,4 0 0,21 1 0 0 0 0 0 0,085 1 0

Отметьте, что мы получили 6 столбцов коэффициентов. Если добавить столбец свободных членов к матрице коэффициентов, мы получим расширенную матрицу.

Заметьте, что коэффициенты в матрице соответствуют нашей обобщенной форме:

Матрица является удобным представлением этих уравнений. Чтобы решить сис­тему уравнений, необходимо задать Е. Ответы, полученные при решении этой

системы уравнений, дадут оптимальные веса, минимизирующие дисперсию при­были всего портфеля для выбранного уровня Е.

Допустим, мы хотим найти решение для Е = 0,14, что соответствует прибыли в 14%. Подставив в матрицу 0,14 для Е и нули для переменных L1 и L2 в первых двух строках, мы получим следующую матрицу:

X1 X2 Х3 X4 L1 L2 Ответ 0,095 0,13 0,21 0,085 0 0 0,14 1 1 1 1 0 0 1 0,1 - 0,0237 0,01 0 0,095 1 0 - 0,0237 0,25 0,079 0 0,13 1 0 0,01 0,079 0,4 0 0,21 1 0 0 0 0 0 0,085 1 0

Необходимо найти N + 2 неизвестных с помощью N + 2 уравнений.


Решение систем линейных уравнений с использованием матриц-строк.

Многочлен — это алгебраическое выражение, которое является суммой опреде­ленного количества элементов. Многочлен с одним элементом называется одно­членом, с двумя элементами — двучленом, с тремя — трехчленом и т.д. Выраже­ние 4 * А ^ 3 + А ^ 2 +А+2 является многочленом, имеющим четыре члена. Члены отделены знаком (+).

Многочлены имеют различные степени. Степень многочлена определяется зна­чением наибольшей степени любого из элементов. Степенью элемента является сумма показателей переменных, содержащихся в элементе. Показанное выше вы­ражение является многочленом третьей степени, так как элемент 4 * А^ 3 имеет третью степень, и это наивысшая степень среди всех элементов многочлена. Если бы элемент был равен 4*A^З*B^62*C, мы бы получили многочлен шестой степени, так как сумма показателей переменных (3+2+1) равна 6.

Многочлен первой степени называется также линейным уравнением и графи­чески задается прямой линией. Многочлен второй степени называется квадрат­ным уравнением и на графике представляет собой параболу. Многочлены третьей, четвертой и пятой степени называются соответственно кубическим уравнением, уравнением четвертой степени, уравнением пятой степени и т.д. Графики много­членов третьей степени и выше довольно сложны. Многочлены могут иметь лю­бое число элементов и любую степень, мы будем работать только с линейными уравнениями, т.е. многочленами первой степени. Решить систему линейных уравнений можно с помощью процедуры Гаусса-Жордана, или, что то же самое, метода гауссовского исключения. Чтобы использовать этот метод, мы должны сначала создать расширен­ную матрицу, объединив матрицу коэффициентов и столбец свободных чле­нов. Затем следует произвести элементарные преобразования для получения единичной матрицы. С помощью элементарных преобразований мы получаем более простую, но эквивалентную первоначальной, матрицу. Элементарные преобразования производятся посредством построчных операций (мы опи­шем их ниже). Единичная матрица является квадратной матрицей коэффициентов, где все элементы равны нулю, кроме диагональной линии элементов, которая начинает­ся в верхнем левом углу. Для матрицы коэффициентов «шесть на шесть» единич­ная матрица будет выглядеть следующим образом:

1 0 0 0 0 о 0 1 0 0 0 о 0 0 1 0 0 о 0 0 0 1 0 о 0 0 0 0 1 о 0 0 0 0 о 1

Матрица, где число строк равно числу столбцов, называется квадратной матри­цей. Благодаря обобщенной форме задачи минимизации V для данного Е, мы все­гда будем иметь дело с квадратными матрицами коэффициентов. Единичная матрица, полученная с помощью построчных операций, эквива­лентна первоначальной матрице коэффициентов. Ответы для нашей системы уравнений можно получить из крайнего правого вектора-столбца. Единица в пер­вой строке единичной матрицы соответствует переменной X,, поэтому значение на пересечении крайнего правого столбца и первой строки будет ответом для X1 Таким же образом на пересечении крайнего правого столбца и второй строки со­держится ответ для Х2 так как единица во второй строке соответствует Х2 Ис­пользуя построчные операции, мы можем совершать элементарные преобразова­ния в первоначальной матрице, пока не получим единичную матрицу. Из единич­ной матрицы можно получить ответы для весов X1 ... ХN—компонентов портфеля. Найденные веса дадут портфель с минимальной дисперсией V для дан­ного уровня ожидаемой прибыли Е[26].

.

Можно проводить три типа построчных операций:

1. Поменять местами любые две строки.

2. Умножить любую строку на ненулевую постоянную.

3. Любую строку умножить на ненулевую постоянную и прибавить к любой другой строке.

С помощью этих трех операций мы попытаемся преобразовать исходную матрицу коэффициентов в единичную матрицу

В расширенной матрице проведем элементарное преобразование номер 1, ис­пользуя правило номер 2 построчных операций. Мы возьмем значение на пересече­нии первой строки и первого столбца (оно равно 0,095) и преобразуем его в едини­цу. Для этого умножим первую строку на 1/0,095. В результате, значение на пересе­чении первой строки и первого столбца станет равно единице. Остальные значения в первой сроке изменятся соответствующим образом.

Проведем элементарное преобразование номер 2. Для этого задействуем прави­ло номер 3 построчных операций (для всех строк, кроме первой). Предварительно для всех строк проведем элементарное преобразование номер 1, преобразовав чис­ло, стоящее в первом столбце каждой строки, в единицу. Затем все числа матрицы, кроме чисел первой строки, умножим на -1. После этого можно перейти к непос­редственному применению правила номер 3. Для этого прибавим первую строку к каждой строке матрицы: первое число первой строки прибавим к первому числу второй строки, второе число первой строки ко второму числу второй строки и так далее. После этого преобразования мы получим нули в первом столбце (во всех строках, кроме первой).

Ознакомительная версия.


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы

Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.