My-library.info
Все категории

Уолтер Левин - Глазами физика. От края радуги к границе времени

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Уолтер Левин - Глазами физика. От края радуги к границе времени. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Глазами физика. От края радуги к границе времени
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
103
Читать онлайн
Уолтер Левин - Глазами физика. От края радуги к границе времени

Уолтер Левин - Глазами физика. От края радуги к границе времени краткое содержание

Уолтер Левин - Глазами физика. От края радуги к границе времени - описание и краткое содержание, автор Уолтер Левин, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
В книге не менее яркой, чем его знаменитые лекции, профессор Левин рассказывает о самых необычных и интересных гранях физики, о чудесах, которые творятся каждый день вокруг нас, – например, о том, почему ударяет молния. О чем бы ни решил рассказать автор, ему всегда удается совместить обучение с развлечением.Книга предназначена для студентов и преподавателей, а также для всех, кто хочет изучать физику с удовольствием и интересом.На русском языке публикуется впервые.

Глазами физика. От края радуги к границе времени читать онлайн бесплатно

Глазами физика. От края радуги к границе времени - читать книгу онлайн бесплатно, автор Уолтер Левин

При пристальном взгляде на звездный спектр видны узкие промежутки, где цвета урезаны или даже полностью отсутствуют; это линии поглощения. В спектре Солнца, например, тысячи таких линий. Они вызваны наличием многих различных элементов в атмосферах звезд. Атомы, как известно, состоят из ядер и электронов. Электроны не могут обладать произвольной энергией: у них дискретные энергетические уровни, и они не могут иметь энергию, промежуточную между этими уровнями. Иными словами, их энергии «квантованы» – этот термин лег в основу такой области физики, как квантовая механика.

У нейтрального водорода один электрон. Если в него ударяет фотон, электрон сможет перейти с одного энергетического уровня на более высокий, поглощая энергию фотона. Но из-за квантования уровней энергии электрона это не может произойти с фотонами любой энергии. Подойдут только фотоны с нужной энергией (с конкретной частотой и длиной волны), позволяющей электрону совершить квантовый скачок с одного уровня на другой. Данный процесс (так называемое резонансное поглощение) убивает фотоны и создает на этой частоте отсутствие цвета в спектре, которое мы называем линией поглощения.

В видимой части спектра звезды имеются четыре линии поглощения водорода (на точно известных длинах волн, или цветах). Большинство элементов могут произвести гораздо большее число линий, потому что у них намного больше электронов, чем у водорода. По сути, у каждого элемента есть собственная уникальная комбинация линий поглощения, нечто вроде отпечатка пальцев. Мы точно знаем это благодаря исследованиям в лаборатории. Таким образом, тщательное изучение линий поглощения в спектре звезды может нам сказать, какие элементы присутствуют в ее атмосфере.

Однако когда звезда удаляется от нас, явление, известное как доплеровский сдвиг, заставляет весь ее спектр (в том числе и линии поглощения) смещаться в сторону красной части спектра (красное смещение). Если же спектр, наоборот, сдвинут в фиолетовую сторону, значит, звезда движется по направлению к нам. Тщательно измерив величину сдвига в длине волны линий поглощения звезды, можно вычислить скорость ее движется по отношению к нам.

Например, если мы наблюдаем двойную систему, каждая звезда будет двигаться половину своей орбиты в нашу сторону и вторую половину от нас. А ее спутник – наоборот. Если обе звезды достаточно яркие, мы увидим линии поглощения, смещенные и в красную, и в фиолетовую стороны спектра. Это укажет нам на то, что мы наблюдаем двойную звезду. Но из-за орбитального движения звезд линии поглощения будут двигаться вдоль спектра. Скажем, если орбитальный период составляет двадцать лет, каждая линия поглощения сделает полный проход по спектру за двадцать лет (десять лет на красное смещение и десять лет на фиолетовое).

Когда мы видим только красное смещение (или только фиолетовое) линий поглощения, мы все равно знаем, что это двойная система, если линии двигаются по спектру туда-сюда; а замер времени, которое требуется для совершения линиями полного цикла, позволит нам определить орбитальный период звезды. В каких случаях такое бывает? Например, тогда, когда одна из звезд слишком тусклая, чтобы ее было видно с Земли в оптическом диапазоне.

А теперь вернемся к источникам рентгеновского излучения.

Шкловский и другие

Еще в 1967 году советский физик Иосиф Самуилович Шкловский предложил модель для Sco X-1. «По всем своим характеристикам данная модель соответствует нейтронной звезде в состоянии аккреции[27]… естественным и очень эффективным источником поставки газа для такой аккреции является поток газа, вытекающий из вторичного компонента тесной двойной системы в сторону основного компонента, представляющего собой нейтронную звезду».

Я понимаю, что эти строки вряд ли потрясут вас до глубины души. Этому отнюдь не способствует и то, что сформулированы они довольно сухим техническим языком астрофизики. Но именно так общаются между собой специалисты практически в любой сфере деятельности. Моя же цель в учебной аудитории и главная причина, по которой я написал эту книгу, – перевести поистине поразительные, новаторские, иногда даже революционные открытия моих коллег-физиков на язык, понятный умному, любознательному неспециалисту. Иными словами, моя цель – навести мосты между миром ученых и вашим миром. Очень многие предпочитают говорить о деле исключительно с коллегами, что усложняет большинству людей – даже тем, кто действительно хочет разобраться в нашей науке, – задачу вхождения в этот мир.

Итак, давайте возьмем идею Шкловского и посмотрим, что же он предлагал. Система двойной звезды состоит из нейтронной звезды и спутника, материя из которого перетекает к нейтронной звезде. Таким образом, нейтронная звезда находится «в состоянии аккреции» – иными словами, она аккрецируется (накапливается) за счет материи своего спутника, звезды-донора. Какая странная идея, не так ли?

Как показало время, Шкловский был прав. Но вот что самое любопытное: он говорил только о Sco X-1, и многие астрономы отнеслись к его идее не слишком серьезно. Впрочем, для теорий это не редкость. Я не думаю, что обижу кого-либо из своих коллег-теоретиков, если скажу, что в астрофизике подавляющее большинство теорий оказываются неверными. И вполне логично, что многие люди, работающие в сфере наблюдательной астрофизики, их игнорируют.

Как оказалось, аккрецирующие нейтронные звезды представляют собой фактически идеальную среду для выработки рентгеновского излучения. А как же мы узнали, что Шкловский прав?

Только в начале 1970-х годов астрономы признали и приняли идею о двойной природе некоторых рентгеновских источников. Впрочем, это не означало, что эти источники непременно являются аккрецирующими нейтронными звездами. Первым источником, открывшим нам свои тайны, стал Cyg Х-1, и он оказался одним из самых важных в рентгеновской астрономии. Cyg Х-1 был обнаружен во время исследовательского полета ракеты в 1964 году; это очень яркий и мощный источник рентгеновского излучения, поэтому он и сегодня привлекает к себе огромное внимание рентгеновских астрономов.

Затем, в 1971 году, радиоастрономы обнаружили радиоволны от Cyg Х-1. Их радиотелескопы точно определили, что Cyg Х-1 расположен на участке неба (в окне ошибки) в 350 квадратных угловых секунд, то есть почти в 20 раз меньшем, чем возможное окно ошибки при отслеживании рентгеновского излучения. Затем исследователи начали искать его оптический аналог. Они хотели увидеть в видимом свете звезду, которая испускала эти загадочные рентгеновские лучи.

В том же радиоокне ошибки находился ярко-фиолетовый сверхгигант, известный как HDE 226868. Учитывая его вид, астрономы могли сравнить его с другими очень похожими звездами и довольно точно оценить массу. В итоге сразу пять астрономов, в том числе всемирно известный Аллан Сандаж, пришли к выводу, что HDE 226868 – просто «обычный сверхгигант B0, без каких-либо особенностей», отказавшись от идеи, что это оптический аналог Cyg Х-1. Но другие (в те времена менее известные) представители оптической астрономии изучили звезду более внимательно и сделали ряд поистине эпохальных открытий.

Они обнаружили, что эта звезда – член двойной системы с периодом орбитального движения 5,6 дня, и доказали, что сильный рентгеновский поток от этой двойной системы обусловлен аккрецией газа из оптической звезды (донора) очень маленьким – компактным – объектом. Только потоком газа, направленного в сторону массивного, но очень маленького объекта, можно было объяснить обильное рентгеновское излучение.

Астрономы провели измерения доплеровского сдвига линий поглощения в спектре звезды-донора, вращающейся по своей орбите (помните, что когда звезда движется в направлении Земли, спектр смещается в сторону фиолетового конца, а когда от Земли – в сторону красного), и пришли к выводу, что генерирующая рентгеновское излучение звезда-спутник слишком массивна, чтобы быть нейтронной звездой или белым карликом (еще одна компактная, очень плотная звезда, как Сириус Б). Но если объект не был ни тем ни другим и если он массивнее нейтронной звезды, то чем еще он мог быть? Конечно же, черной дырой! Именно этот вывод и сделали астрономы.

Однако, будучи учеными-наблюдателями, они высказали эти идеи с большой осмотрительностью. Например, Луиза Уэбстер и Пол Мердин, отчет которых был опубликован в журнале Nature 7 января 1972 года, сформулировали свой вывод следующим образом: «Масса звезды-спутника, по всей видимости, больше двух масс Солнца, следовательно, мы неизбежно должны предположить, что данный объект может быть черной дырой». А вот что написал Том Болтон месяц спустя в том же Nature: «В связи с этим возникает весьма явная вероятность, что спутник [аккретор] является черной дырой».


Уолтер Левин читать все книги автора по порядку

Уолтер Левин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Глазами физика. От края радуги к границе времени отзывы

Отзывы читателей о книге Глазами физика. От края радуги к границе времени, автор: Уолтер Левин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.