Ознакомительная версия.
Вспомните, что касательный портфель находится на эффективной границе (арифметической или геометрической) портфелей с ограниченной суммой весов в точке с наивысшим отношением Шарпа (уравнение (7.01)). Мы просто повысим рычагом этот портфель и умножим веса каждого из его компонентов на переменную, называемую q, которую можно получить следующим образом:
(7.13) q=(E-RFR)/V,
где Е = ожидаемая прибыль (арифметическая) касательного портфеля;
RFR = безрисковая ставка, по которой вы можете занять или дать взаймы;
V= дисперсия касательного портфеля.
Уравнение (7.13) является достаточно хорошим приближением реального оптимального q.
Следующий пример может проиллюстрировать роль оптимального q. Вспомните, что наш неограниченный геометрический оптимальный портфель выглядит так:
Компонент Вес Toxico 1,025955 Incubeast 0,4900436 LA Garb 0,4024874
Портфель имеет AHPR= 1,245694 и дисперсию 0,2456941. В оставшейся части нашего обсуждения мы будем исходить из того, что RFR = 0 (в данном случае отношение Шарпа этого портфеля, (AHPR-(1 + RFR)) / SD, равно 0,49568).
Теперь, если мы введем те же прибыли, дисперсии и коэффициенты корреляции компонентов в матрицу и рассчитаем, какой портфель находится в точке касания при RFR = 0, когда сумма весов ограничена 1,00 и при отсутствии NIC, то получим следующий портфель:
Компонент Вес Toxico 0,5344908 Incubeast 0,2552975 LA Garb 0,2102117
Этот портфель имеет AHPR = 1,128, дисперсию 0,066683 и отношение Шарпа 0,49568. Отметьте, что отношение Шарпа касательного портфеля, для которого сумма весов ограничена 1,00, при отсутствии NIC, в точности равно отношению Шарпа для нашего неограниченного геометрического оптимального портфеля. Вычитая единицу из полученных AHPR, мы получаем арифметическую среднюю прибыль портфеля. Далее заметим: чтобы для ограниченного касательного портфеля получить прибыль, равную прибыли неограниченного геометрического оптимального портфеля, мы должны умножить веса первого на 1,9195.
0,245694/0,128=1,9195
Теперь, если мы умножим каждый из весов ограниченного касательного портфеля, то получим портфель, идентичный неограниченному геометрическому оптимальному портфелю:
Компонент Вес * 1,9195 = Вес Toxico 0,5344908 1,025955 Incubeast 0,2552975 0,4900436 LA Garb 0,2102117 0,4035013
Множитель 1,9195 получен в результате деления прибыли неограниченного геометрического оптимального портфеля на прибьыь ограниченного касательного портфеля. Как правило, нам надо найти неограниченный геометрический оптимальный портфель, зная только ограниченный касательный портфель. Именно здесь и используется оптимальное q. Если мы допускаем, что RFR = 0, то можно
определить оптимальное q по нашему ограниченному касательному портфелю следующим образом:
(7.13) q=(E-RFR)/V=(0,128-0)/0,066683 = 1,919529715
Несколько замечаний по поводу RFR. Когда речь идет о фьючерсных контрактах, следует приравнять RFR к нулю, так как в действительности мы не занимаем и не ссужаем средства для увеличения или уменьшения активов портфеля. С акциями ситуация иная, и RFR следует принимать во внимание.
Вы часто будете использовать AHPR и дисперсию для портфелей на основе дневных HPR компонентов. В таких случаях необходимо применять не годовую, а дневную ставку RFR. Это довольно простая задача. Сначала необходимо убедится, что годовая ставка является эффективной годовой процентной ставкой. Процентные ставки обычно указываются в годовых процентах, но часто они представляют собой номинальную годовую процентную ставку. Если процентная ставка складывается из полугодовых, квартальных, месячных ставок и т.д., то ставка, заработанная за год, будет больше, чем просто годовая ставка (номинальная). Когда процент суммируется, эффективная годовая процентная ставка может быть определена из номинальной процентной ставки. Полученную эффективную годовую процентную ставку мы и будем использовать в расчетах. Для преобразования номинальной ставки в эффективную ставку следует использовать формулу:
где Е = эффективная годовая процентная ставка;
R = номинальная годовая процентная ставка;
М == число периодов сложения за год.
Предположим, номинальная годовая процентная ставка составляет 9%, и доход по ней пересчитывается каждый месяц по формуле сложного процента. Соответствующая эффективная процентная ставка будет равна:
(7.14) Е = (1+0,09/12)^ 12-1 = (1 + 0,0075)^12-1 ==1,0075^12- 1 = 1,093806898 = 0,093806898
Таким образом, наша эффективная годовая процентная ставка будет немногим больше 9,38%. Теперь, чтобы рассчитать HPR на основе рабочих дней, мы должны найти среднее число рабочих дней 365,2425 /7*5= 260,8875. Разделив 0,093806898 на 260,8875, мы получим дневное RFR = 0,0003595683887.
Если мы на самом деле будем привлекать средства, чтобы получить из ограниченного касательного портфеля неограниченный геометрический оптимальный портфель, необходимо ввести значение RFR в отношение Шарпа, уравнение (7.01), и оптимальное q, уравнение (7.13).
Подведем итог. Допустим, RFR для вашего портфеля не равно 0, и необходимо найти геометрический оптимальный портфель, не рассчитывая ограниченный касательный портфель для этого RFR. Можете ли вы перейти прямо к матрице, установить сумму весов на какое-либо произвольно высокое значение, добавить NIC и найти неограниченный геометрический оптимальный портфель, когда RFR больше О? Да, если вычесть RFR из ожидаемых прибылей каждого компонента, но не из NIC (т.е. ожидаемая прибыль для NIC остается нулевой, что соответствует среднему арифметическому HPR= 1,00). Теперь, решив матрицу, мы получим неограниченный геометрический оптимальный портфель, когда RFR больше 0.
Так как эффективная граница для портфелей с неограниченной суммой весов дает один и тот же портфель с различной величиной рычага, линия CML не может пересекаться или касаться эффективной границы портфелей с неограниченной суммой весов, если же сумма весов ограничена (т.е. равна 1) — это возможно.
Мы рассмотрели несколько способов определения геометрического оптимального портфеля. Например, мы можем рассчитать его эмпирически, что было продемонстрировано в книге «Формулы управления портфелем» и повторено в первой главе этой книги. В данной главе мы узнали, как с помощью параметрического метода рассчитать портфель при любом значении безрисковой ставки.
Теперь, когда мы знаем, как определить геометрический оптимальный портфель, рассмотрим его использование в реальной жизни. Геометрический оптимальный портфель даст нам максимально возможный геометрический рост. В следующей главе мы рассмотрим способы использования этого портфеля при заданных рисковых ограничениях.
Глава 8
Управление риском
Мы познакомились с различными методами расчета оптимального портфеля, с геометрией портфелей и взаимосвязью оптимального количества и оптимального веса. Если торговать портфелем базового инструмента на геометрическом оптимальном уровне и при этом реинвестировать прибыли, то отношение ожидаемого дохода к ожидаемому риску будет максимальным. В этой главе мы поговорим о построении геометрических оптимальных портфелей при заданном уровне риска. Речь пойдет о том, что, какими бы инструментами мы ни торговали, можно выбрать область в спектре риска и добиться максимального геометрического роста для этого уровня риска.
Размещение активов
Следует иметь в виду, что оптимальный портфель, полученный с помощью параметрического метода, будет почти таким же, как и портфель, полученный с помощью эмпирического метода (он подробно рассматривался в главе 1).
В этом случае возможны большие проигрыши по портфелю (т.е. значительные колебания баланса), и единственная возможность избежать значительных убытков — «разбавить» портфель, т.е. добавить к геометрическому оптимальному портфелю какой-либо безрисковый актив. Вышеописанную процедуру мы назовем размещением активов (asset allocation). Степень риска и надежность любой инвестиции является функцией не объекта инвестиций самого по себе, а функцией размещения активов.
Даже портфели, состоящие из акций голубых фишек (blue-chip stocks), находящиеся на уровне неограниченного геометрического оптимального портфеля, могут показать значительные проигрыши. Однако этими акциями следует торговать именно на таких уровнях для максимизации отношения потенциального геометрического выигрыша к дисперсии (риску), чтобы обеспечить достижение цели за наименьшее время. С этой точки зрения торговля голубыми фишками является такой же рискованной, как и торговля контрактами на свинину, а торговля свининой не менее консервативна, чем торговля надежными акциями. То же можно сказать о портфеле фьючерсов или облигаций.
Ознакомительная версия.