My-library.info
Все категории

Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
О том, чего мы не можем знать. Путешествие к рубежам знаний
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
127
Читать онлайн
Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний

Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний краткое содержание

Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний - описание и краткое содержание, автор Маркус дю Сотой, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
«Хотя эта книга посвящена тому, чего мы знать не можем, также очень важно понять, что мы знаем. В этом путешествии к пределам знаний мы пройдем через области, уже нанесенные учеными на карты, до самых пределов последних на сегодняшний день достижений науки. В пути мы будем задерживаться, чтобы рассмотреть те моменты, когда ученые считали, что зашли в тупик и дальнейшее продвижение вперед невозможно, но следующее поколение исследователей находило иные пути. Это позволит нам по-новому взглянуть на то, что мы сегодня можем считать непознаваемым. Я надеюсь, что к концу нашего путешествия эта книга станет всеобъемлющим обзором не только того, чего мы не можем узнать, но и того, что мы уже знаем».

О том, чего мы не можем знать. Путешествие к рубежам знаний читать онлайн бесплатно

О том, чего мы не можем знать. Путешествие к рубежам знаний - читать книгу онлайн бесплатно, автор Маркус дю Сотой

В этом рассуждении, известном под названием «пари Паскаля», он утверждает, что выбор веры в Бога приносит гораздо больший выигрыш. Если такой выбор ошибочен, вы ничего не теряете; если он справедлив, вы выигрываете вечную жизнь. И вместе с тем ставка на то, что Бога нет, в случае проигрыша приносит вечное проклятие, а в случае выигрыша не дает ничего, кроме знания, что Бога действительно нет. Этот аргумент рассыпается, если вероятность существования Бога на самом деле равна нулю, но, даже если это и не так, цена верования может оказаться слишком высокой по сравнению с вероятностью существования Бога.

Вероятностные методы, разработанные математиками, подобными Ферма и Паскалю, для разрешения неопределенности, оказались невероятно могущественными. Явления, считавшиеся недоступными для познания, выражением воли богов, начали становиться досягаемыми для человеческого разума. На сегодня такие вероятностные подходы являются лучшим из имеющихся у нас средств исследования буквально всего, от поведения частиц газа до подъемов и падений рынка ценных бумаг. Действительно, кажется, что сама природа материи отдана на милость математической вероятности, как мы увидим на «Рубеже третьем», говоря об использовании квантовой физики для предсказания поведения наблюдаемых нами частиц. Но с точки зрения поисков определенности такие вероятностные методы представляют собой раздражающий компромисс.

Я, безусловно, ценю величайшие открытия, сделанные Ферма, Паскалем и другими, но они не помогают мне узнать заранее, сколько очков выпадет на брошенной мной кости. Сколько я ни изучал математическую теорию вероятностей, меня никогда не покидало чувство неудовлетворенности. Единственное, что вбивает в голову любой курс теории вероятностей, – это идея о том, что, сколько бы раз подряд у вас ни выпадала шестерка, это никак не влияет на поведение кости при следующем броске.

Так можно ли как-нибудь узнать, как упадет моя кость? Или же это знание навечно останется недоступным? Не останется, если верить откровениям одного ученого, жившего за морем, в Англии.

Математика природы

Для меня Исаак Ньютон – главный герой борьбы с непознаваемым. Идея о том, что я могу узнать о Вселенной все, происходит из революционной работы Ньютона «Математические начала натуральной философии». Эта книга, впервые изданная в 1687 г., посвящена разработке нового математического языка, обещавшего дать инструменты, которые откроют секреты устройства Вселенной. В ней была предложена разительно новая модель занятий наукой. Как заявил в 1747 г. французский физик Алексис Клеро, эта работа «пролила свет математики на науку, которая до тех пор оставалась во тьме догадок и гипотез».

Она также была попыткой объединения, создания теории, которая описывала бы небесное и земное, великое и малое. Кеплер предложил законы, описывающие движение планет, которые он разработал эмпирически, опираясь на данные и пытаясь найти уравнения, которые воссоздавали бы прошлое. Галилей описал траекторию шара, летящего в воздухе. Гениальность Ньютона позволила ему понять, что эти два примера – проявления одного и того же феномена: гравитации.

Ньютон, появившийся на свет на Рождество 1643 г. в городе Вулсторп в Линкольншире, всегда стремился обуздать физический мир. Он делал механические и солнечные часы, строил миниатюрные мельницы на мышиной тяге, чертил бесчисленные планы зданий и кораблей и делал подробные зарисовки животных. Жившая в его доме кошка однажды исчезла, улетев на сделанном Ньютоном воздушном шаре. Однако отзывы его школьных учителей не сулили ему блестящего будущего: его называли «невнимательным и ленивым».

Надо сказать, что лень может быть не самым плохим качеством для математика. Она может быть мощным стимулом для изобретательного поиска какого-нибудь легкого способа решения задачи, избавляющего от упорной и монотонной работы. Но учителя, как правило, не ценят это качество.

И действительно, Ньютон так плохо учился в школе, что мать сочла его учебу пустой тратой времени и решила, что ему будет полезнее научиться управлять семейной фермой в Вулсторпе. К сожалению, в деле управления хозяйством Ньютон оказался столь же безнадежным, так что его снова отправили в школу. Хотя эта история наверняка апокрифична, говорят, что внезапное превращение Ньютона в ученого совпало с ударом по голове, который он получил от школьного хулигана. Как бы то ни было, после этого преображения Ньютон внезапно стал блестящим учеником и в конце концов поступил на учебу в Тринити-колледж в Кембридже.

В 1665 г., когда в Англии вспыхнула эпидемия бубонной чумы, Кембриджский университет был из предосторожности закрыт. Ньютон вернулся домой, в Вулсторп. Изоляция часто бывает важным ингредиентом изобретения новых идей. Ньютон запирался в своей комнате и размышлял.

Истина – дитя тишины и размышлений. Я постоянно держал предмет своих размышлений перед собой и ждал, пока первые проблески медленно, мало-помалу не разгорятся, превращаясь в яркий и ясный свет.

Будучи изолирован в Линкольншире, Ньютон создал новый язык, способный выразить картину постоянно изменяющегося мира, – язык математического анализа. Этому инструменту предстояло стать ключом к возможности заблаговременного знания о будущем поведении Вселенной. Именно этот язык дает мне надежду узнать, какой стороной может упасть моя игральная кость.

Математические фотографии

Математический анализ пытается разобраться в математической задаче, которая на первый взгляд кажется бессмысленной: деление ноля на ноль. Когда я роняю свою игральную кость на стол, именно эту задачу мне нужно решить, чтобы узнать мгновенную скорость кости, летящей в воздухе.

Скорость кости постоянно увеличивается, поскольку сила тяжести тянет ее к земле. Как же вычислить, чему равна эта скорость в любой момент времени? Например, с какой скоростью падает кость через одну секунду? Скорость равна пройденному расстоянию, деленному на прошедшее время. Значит, я могу измерить расстояние, которое она пролетит в течение следующей секунды, и получить среднюю скорость за этот период. Но я хочу узнать точную скорость. Я могу измерить расстояние, пройденное за более краткий промежуток времени, скажем, за половину или четверть секунды. Чем меньше длительность такого интервала, тем точнее я могу вычислить скорость. В конце концов для получения точного значения скорости я буду вынужден взять бесконечно малый временной интервал. Но тогда мне придется вычислять результат деления ноля на ноль.

Придуманное Ньютоном исчисление сделало такой расчет возможным. Он понял, как можно вычислить то значение, к которому скорость стремится по мере уменьшения длительности временного отрезка. Этот революционный новый язык смог выразить картину постоянно изменяющегося мира. Геометрия древних греков была совершенным средством для описания статической, застывшей картины мира.

Математический анализ: осмысление деления ноля на ноль

Рассмотрим автомобиль, начинающий движение из неподвижного состояния. В момент включения секундомера водитель нажимает на педаль газа. Предположим, что, согласно нашим измерениям, в течение t секунд водитель проехал t · t м. С какой скоростью машина будет ехать через 10 секунд? Мы можем получить приблизительное значение скорости, измерив расстояние, пройденное автомобилем между 10-й и 11-й секундами. Средняя скорость за эту секунду равна (11 · 11–10 · 10)/1 = 21 м/с.

Но, взяв среднюю скорость на меньшем временном отрезке, скажем, длительностью 0,5 секунды, мы получим:

(10,5 · 10,5 – 10 · 10)/0,5 = 20,5 м/с.

Это, конечно, чуть медленнее, так как автомобиль разгоняется и во вторую половину секунды, которая прошла между 10-й и 11-й, он в среднем едет быстрее. Возьмем теперь еще меньший промежуток. Давайте еще раз разделим его пополам:

(10,25 · 10,25–10 · 10)/0,25 = 20,25 м/с.

Я надеюсь, что ваш внутренний математик уже заметил закономерность. Если взять временной промежуток длительностью х секунд, то средняя скорость за это время будет равна 20 + x м/с. По мере того как мы рассматриваем все меньшие интервалы, она все более приближается к 20 м/с. Так что, хотя кажется, что определение скорости на 10-й секунде требует вычисления частного 0/0, математический анализ позволяет понять, что это означает.

Великое математическое открытие Ньютона дало нам язык, способный описать мир движущийся. Математика перешла от описания натюрморта к воспроизведению движущегося изображения. В науке произошло нечто подобное случившемуся в этот же период перевороту в искусстве, когда динамическое искусство барокко вырвалось из статического искусства Возрождения.

Вспоминая это время, которое он называл «annus mirabilis»[17], Ньютон считал его одним из самых продуктивных периодов своей жизни. «Я был в расцвете сил и думал о Математике и Философии больше, чем когда-либо после».


Маркус дю Сотой читать все книги автора по порядку

Маркус дю Сотой - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


О том, чего мы не можем знать. Путешествие к рубежам знаний отзывы

Отзывы читателей о книге О том, чего мы не можем знать. Путешествие к рубежам знаний, автор: Маркус дю Сотой. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.