My-library.info
Все категории

Таблица Менделеева. Элементы уже близко - Аркадий Искандерович Курамшин

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Таблица Менделеева. Элементы уже близко - Аркадий Искандерович Курамшин. Жанр: Прочая научная литература год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Таблица Менделеева. Элементы уже близко
Дата добавления:
30 август 2024
Количество просмотров:
15
Читать онлайн
Таблица Менделеева. Элементы уже близко - Аркадий Искандерович Курамшин

Таблица Менделеева. Элементы уже близко - Аркадий Искандерович Курамшин краткое содержание

Таблица Менделеева. Элементы уже близко - Аркадий Искандерович Курамшин - описание и краткое содержание, автор Аркадий Искандерович Курамшин, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Сто восемнадцать кирпичиков мироздания под одной обложкой! Об истории их открытий, необычных свойствах и неожиданных областях применений расскажет читателю книга «Таблица Менделеева: элементы уже близко».
И тот, кто уже давно знает и любит химию, и тот, кто ещё только хочет сделать первые шаги в ней, найдут в книге что-то интересное и полезное для себя.
Аркадий Курамшин – доцент кафедры высокомолекулярных и элементоорганических соединений Химического института им. А. М. Бутлерова. В 2019 году награжден знаком «За заслуги в образовании». Был популяризатором науки и одним из ведущих научных журналистов, пишущих о химии.

Таблица Менделеева. Элементы уже близко читать онлайн бесплатно

Таблица Менделеева. Элементы уже близко - читать книгу онлайн бесплатно, автор Аркадий Искандерович Курамшин
ядрам.

Состав соединений с многоцентровыми ковалентными связями часто отличается от состава, который можно было бы предсказать, основываясь на привлечении «привычной» теории валентных связей, где одинарная, двойная или тройная связи могут образовываться только между двумя атомами (то есть облако электронов может единовременно принадлежать только двум атомам – двум центрам, формирующим связь).

Изучение химической связи в боранах позволило определить, что теория валентных связей и классические валентные состояния не всегда могут предсказать и описать состав и строение химических веществ. Обнаружение для атомов бора многоцентровых многоэлектронных связей поставило перед химиками вопрос о необходимости нового определения валентности и других характеристик ковалентной связи, тем более что существующее в настоящее время определение валентности по IUPAC нельзя считать идеальным: «Валентность – максимальное количество одновалентных атомов, которое может соединиться с элементом или фрагментом, или с тем, чем может быть заменен этот атом». Очевидно, что давать определение феномена, используя слово, являющееся производным этого феномена, немного нелогично.

6. Углерод

Поскольку любой химик (как, впрочем, и любой человек) является углеродной формой жизни, об углероде он может разговаривать часами. Любой, кроме химиков-органиков. Они, конечно, тоже углеродные формы жизни, внешне неотличимые от людей, но поскольку они работают над получением новых соединений, содержащих линейные, разветвленные и замкнутые цепочки из атомов углерода и полагают, что все остальные элементы… периодической системы нужны лишь для исполнения грандиозного замысла – построения главной углеродной цепочки, которая их волей свяжет и скуёт все остальные углеродные цепи, – они могут говорить об углероде сутками.

Органическая химия, конечно, интересна, и действительно об органических соединениях можно говорить много и долго (говорю об этом ответственно, до того, как стать химиком-элементооргаником, я тоже был органиком), но и в виде простых веществ, веществ, состоящих только из атомов углерода, углерод весьма интересен. Углерод образует много разновидностей простых веществ – аллотропных модификаций. Кажется, что в последнее время каждая из таких модификаций получает своё «десятилетие славы» – в 1990-е годы своеобразным «хитом» стали полые «мячики» из атомов углерода – фуллерены, в начале 2000-х внимание химиков и специалистов по материаловедению приковали углеродные нанотрубки, и, наконец, последнее десятилетие, после вручения в 2010-м Нобелевской премии по физике Андрею Гейму и Константину Новосёлову, самой «хайповой» формой углерода стал графен – двумерный материал или слой углеродов толщиной в один атом.

Однако, говоря об углероде, больше бы хотелось рассказать не о его новых обличьях, а о представителях той его формы, которые известны как лучшие друзья девушек, – об алмазах. Да, в английской песне, которую пела Норма Джин Бейкер (более известная как Мерилин Монро), речь шла об алмазах; бриллианты – те же алмазы, но огранённые, с правильной формой, упомянуты в более поздней песне, которую пела Вера Галушка (она же Вера Брежнева).

Тысячелетиями алмазы ассоциировались с достатком и богатством – блеск ограненных камней украшал перстни вельмож, короны монархов и тиары понтификов. К сожалению, у алмазов есть и своя темная сторона – почти у каждого крупного камня есть своя кровавая история, известны случаи, когда алмазами небольшого размера финансировались локальные конфликты и небольшие гражданские войны.

Твёрдость алмазов и блеск граней бриллиантов многие века заставлял алхимиков и химиков пытаться получать эти камни искусственным путём. Первый удачный синтез алмаза был осуществлен почти одновременно в США и Швеции. Для синтеза исследователи воспользовались тем способом, с помощью которого алмазы формируются в земной коре, – первая технология получения искусственных алмазов основывалась на превращении графита в алмаз при высоких температурах (более 3000 °C) и высоких давлениях (более 130 атмосфер). Демонстрация возможностей получения алмазов впечатляла, но, увы, затраты энергии на создание температуры и давления, необходимых для такого получения алмазов, не позволяли рассматривать новую технологию как способ промышленного производства – по расходам на их получение первые синтетические алмазы стоили гораздо дороже, чем алмазы природного происхождения. С той поры способ получения алмазов сжатием при высокой температуре был модернизирован, использование катализаторов позволяет снизить и давление, и температуру синтеза. Конечно, этот способ не идеален – если кристалл алмаза в пару микрон диаметром можно вырастить за пару минут, то алмаз в один карат нужно растить несколько недель.

Тем не менее разработанная технология означает, что в настоящее время появилась возможность синтезировать алмазы, практически неотличимые от природных, из любого углеродсодержащего материала. Конечно, отличить природные алмазы, сформировавшиеся в кимберлитовых трубках, от алмазов, синтезированных, скажем, из наших волос, можно с помощью специального оборудования (например, определив их изотопный состав), но принципиальное значение такая возможность представляет только для алмазов, поступающих на рынок ювелирных изделий (природные алмазы дороже синтетических) – химические и физические свойства синтетических алмазов полностью идентичны свойствам природных камней.

С точки зрения химика или физика, описывая физические, химические и электронные свойства алмазов, мы рискуем слишком часто использовать превосходную форму сравнения. До настоящего времени алмаз является самым твёрдым материалом, известным человеку, и одним из самых химически устойчивых веществ – он выдерживает воздействие самых сильных кислот. У алмаза также наиболее высокая теплопроводность из известных материалов, он легко рассеивает тепло, поэтому алмаз всегда прохладен на ощупь. Благодаря распределению электронов алмаз можно считать хрестоматийным примером диэлектрика, и опять же благодаря своему электронному строению алмаз – твердый материал с идеальной пропускаемостью электромагнитного излучения в широкой области спектра. Все эти свойства делают алмазы лучшими друзьями не только девушек, но и учёных. Твердость и химическая стойкость алмаза позволяют применять его для изготовления защитных покрытий, устойчивых к истиранию, химической коррозии и радиационному повреждению. Высокая теплопроводность и диэлектрические свойства идеально подходят для изготовления электроники. Прозрачность алмаза позволяет делать из него оптические устройства, а биологическую совместимость алмаза можно использовать, изготавливая покрытия для имплантов. Эти свойства алмазов известны несколько веков, почему же случаи практического применения алмазов достаточно редки? Причина этому в том, что размеры природных алмазов, равно как и алмазов синтетических, тех, которые получают при высоких давлениях и высоких температурах, ограниченны и обычно не превышают нескольких миллиметров, и их можно резать и формовать только вдоль определённых граней. Сложности с обработкой алмазов не дают применять их в большинстве областей, в которых их можно было бы применить.


Аркадий Искандерович Курамшин читать все книги автора по порядку

Аркадий Искандерович Курамшин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Таблица Менделеева. Элементы уже близко отзывы

Отзывы читателей о книге Таблица Менделеева. Элементы уже близко, автор: Аркадий Искандерович Курамшин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.