My-library.info
Все категории

Станислав Славин - 100 великих тайн космонавтики

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Станислав Славин - 100 великих тайн космонавтики. Жанр: Прочая научная литература издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
100 великих тайн космонавтики
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
31 январь 2019
Количество просмотров:
128
Читать онлайн
Станислав Славин - 100 великих тайн космонавтики

Станислав Славин - 100 великих тайн космонавтики краткое содержание

Станислав Славин - 100 великих тайн космонавтики - описание и краткое содержание, автор Станислав Славин, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Вы ошибаетесь, если полагаете, что мечта о покорении космоса и о межпланетных путешествиях зародилась в XIX–XX веках. Уже жрецы Древнего Вавилона и китайские астрономы около 5000 лет тому назад имели первичные представления о космосе и небесных телах. Фалес из Милета (VI век до н. э.), которого часто называют отцом греческой астрономии, основал школу, где, вероятно, впервые заговорили о том, что планета наша вовсе не плоская. А другой греческий ученый, Аристарх, в 280 году до н. э. даже попытался измерить относительное удаление Солнца и Луны от Земли…О ста самых удивительных и невероятных тайнах космонавтики рассказывает очередная книга серии.

100 великих тайн космонавтики читать онлайн бесплатно

100 великих тайн космонавтики - читать книгу онлайн бесплатно, автор Станислав Славин

Модель американского ракетоплана «Дайна Сор»

Ракетчики же, да будет вам известно, ведут свою родословную, с одной стороны, от артиллеристов, а с другой стороны, от авиаторов. Авиационные специалисты все норовили приделать к ракете крылья, чтобы она походила на самолет. Артиллеристы полагали, что можно обойтись и без этого, поскольку, к примеру, снаряды отлично летают и так. Первые боевые ракеты, созданные ими, тоже полетели без крыльев. И подобно снарядам, оказались техникой одноразовой.

Только куда еще более сложной. А значит, и капризной. Когда Юрий Алексеевич 13 апреля 1961 года, на следующий день после полета, под магнитофонную запись рассказал о всех перипетиях своего полетах, специалисты за голову схватились: получалось, что полет закончилось благополучно почти что чудом. И доклад предпочли засекретить почти на 30 лет.

Между тем ничего необычного в многочисленных малых и больших отказах не было. При организации полета конструкторы во главе с С. П. Королевым столкнулись с целым комплексом проблем, в числе которых – чрезвычайно высокие механические перегрузки и огромные тепловые нагрузки на ракету-носитель и сам космический корабль.

С помощью расчетов, а также экспериментальных исследований инженеры разработали оптимальную форму спускаемого аппарата и эффективные теплозащитные материалы. В итоге когда перед советом главных конструкторов встала проблема выбора, строить космический «самолет» или аппарат капсульного типа, похожий на головную часть межконтинентальной баллистической ракеты, они предпочли более простое решение – ведь космическая гонка шла в бешеном темпе и времени было в обрез.

И инженеры для спуска с орбиты предложили баллистическую капсулу, которую входит в атмосферу с огромной скоростью, а ее поверхность может нагреваться до 2500–3000°. От сгорания ее спасает так называемая абляционная обмазка. Ее вещество в атмосфере оплавлялось и испарялось с поверхности капсулы потоком набегающего воздуха, унося при этом излишнее тепло.

Следующая хитрость, которую придумали конструкторы: они разделили космический корабль на несколько отсеков-модулей. В одном пометили ТДУ – тормозную двигательную установку с топливными баками, в другом – системы управления и энергопитания, в третьем – самого космонавта и системы жизнеобеспечения…

Со временем все системы первых «Востоков» на последующих кораблях – «Восходах» и «Союзах» – были доведены почти до идеала. Не случайно многократно модернизированная «семерка» и по сей день возит космонавтов с астронавтами на орбиту, справедливо считаясь одной из самых надежных ракетных систем в мире.

Но это вовсе не значит, что мечта о создании многоразовых космических систем окончательно оставлена.

Хотя большинство многоразовых кораблей так и осталось проектами, а единственная система многократного применения, принятая в эксплуатацию (Space Shuttle), оказалась страшно дорогой и далеко не самой надежной, начиналось все не так уж плохо. В начале прошлого века наряду с одноразовыми космическими системами многие ученые и конструкторы, как уже говорилось, работали и над многоразовыми системами.

Исторически одним из первых технически проработанных проектов был ракетный самолет конструкции австрийского конструктора Ойгена Зенгера. В 1929 году 24-летний инженер начал работу над докторской диссертацией. По замыслу инженера ракетоплан должен был выходить на околоземную орбиту, а затем возвращаться на Землю с помощью крыльев. В конце 30-х – начале 40-х годов ХХ века в обстановке полной секретности он также выполнил глубокую проработку «антиподного бомбардировщика», способного атаковать цель на другой стороне Земли.

К счастью, война кончилась раньше, чем в Третьем рейхе успели реализовать проект, иначе американцам, к примеру, было бы несдобровать. А сам проект был тщательно изучен по обе стороны Атлантики и стал отправной точкой для многих послевоенных исследований как на Западе, так и в Советском Союзе.

Идея о полетах в космос с обычного аэродрома не оставляла специалистов по обе стороны Атлантики. Так, в США в начале 50-х годов разрабатывался ракетный бомбардировщик Bomi, двухступенчатый вариант которого мог бы выходить на околоземную орбиту. В 1957 году американские военные начали работу над ракетопланом «Дайна-Сор», который по идее мог бы добираться до спутников на орбите, осуществлять разведку с высоты и даже в случае нужды атаковать бомбами и ракетами те или иные цели, а затем, планируя, возвращаться на базу.

Далее, была осуществлена программа постройки и испытаний экспериментальных ракетопланов, которые сбрасывались с самолета-носителя Б-29 или Б-52 и, включив затем собственные двигатели, развивали гиперзвуковые скорости, ставили рекорды высоты. Так, в сентябре 1961 года ракетоплан Х-15 развил скорость 5832 км/ч, а 22 августа 1963 года достиг высоты 107 906 м! В дальнейшем предполагалось, что подобные самолеты смогут выходить и на орбиту.

Суперсекретная «Спираль»

В СССР, еще до полета Гагарина, также рассматривалось несколько вариантов крылатых пилотируемых аппаратов многоразового использования. Так, главный конструктор В. М. Мясищев предлагал ВКА-23, А. Н. Туполев «проект 136», П. В. Цыбин по заказу С. П. Королева известный как «лапоток».

Во второй половине 60-х годов в СССР, в ОКБ А. И. Микояна, под руководством Г. Е. Лозино-Лозинского, велась работа над многоразовой авиационно-космической системой «Спираль», которая состояла из сверхзвукового самолета-разгонщика и орбитального самолета, выводимого на орбиту с помощью двухступенчатого ракетного ускорителя. Рассматривался и вариант запуска «Спирали» в космос с помощью ракеты-носителя «Союз».

Расскажем об этой сверхсекретной системе несколько подробнее.

Узнав о достижениях американцев, наши конструкторы тоже принялись за освоение подобных рубежей. В середине 60-х годов ОКБ-155 Артема Микояна получает задание правительства возглавить работы по орбитальным и гиперзвуковым самолетам, а точнее – по созданию двухступенчатой авиационно-космической системы «Спираль». Главным конструктором этой системы стал Глеб Евгеньевич Лозино-Лозинский.

Г. С. Титов, космонавт номер 2 стал первым в списке будущих пилотов «космического истребителя»

Перебрав несколько вариантов, конструктор и его коллеги в конце концов пришли к такому решению. Система «Спираль» должна состоять из 52-тонного гиперзвукового самолета-разгонщика, получившего индекс 50–50, и расположенного на нем 8,8-тонного пилотируемого орбитального самолета (индекс 50) с 54-тонным двухступенчатым ракетным ускорителем.

Самолет должен разогнать «Спираль» до гиперзвуковой скорости 1800 м/с (М6). Затем на высоте 28–30 км происходило разделение ступеней. Разгонщик возвращался на аэродром, а орбитальный самолет с помощью ракетного ускорителя, работающего на фтороводородном (F2+H2) топливе, должен был выйти на орбиту.

Экипаж самолета-разгонщика размещался в двухместной герметичной кабине с катапультными креслами. Собственно орбитальный самолет вместе с ракетным ускорителем крепился сверху в специальном ложе, причем носовая и хвостовая части закрывались обтекателями.

В качестве топлива разгонщик использовал сжиженный водород, который подавался в четыре турбореактивных двигателей АЛ-51 разработки Архипа Люльки, имеющие общий воздухозаборник и работающие на единое сверхзвуковое сопло внешнего расширения. Особенностью двигателей являлось использование паров водорода для привода турбины. Вторым принципиальным новшеством был регулируемый гиперзвуковой воздухозаборник, использующий для сжатия поступающего в турбины воздуха практически всю переднюю часть нижней поверхности крыла. Расчетная дальность полета самолета-разгонщика с нагрузкой составляла 750 км, а при полете в качестве разведчика – более 7000 км.

Боевой многоразовый пилотируемый одноместный орбитальный самолет длиной 8 м, с размахом крыла 7,4 м (в разложенном положении) выполнялся по схеме «несущий корпус». Благодаря выбранной аэродинамической компоновке на стреловидные консоли крыла приходилось лишь 3,4 м, а остальная часть несущей поверхности соотносилась с шириной фюзеляжа. Консоли крыла при прохождении участка плазмообразования (выведение на орбиту и начальная фаза спуска) отклонялись вверх для исключения прямого обтекания их тепловым потоком. На атмосферном участке спуска орбитальный самолет раскладывал крылья и переходил в горизонтальный полет.

Двигатели орбитального маневрирования и два аварийных ЖРД работали на высококипящем топливе АТ-НДМГ (азотный тетраксид и несимметричный диметилгидразин), аналогичном применяемому на боевых баллистических ракетах. В дальнейшем, впрочем, его планировалось заменить на более экологичное топливо на основе фтора. Запасов топлива хватало на орбитальный полет продолжительностью до двух суток, но основная задача орбитального самолета должна была выполняться в течение первых 2–3 витков.


Станислав Славин читать все книги автора по порядку

Станислав Славин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


100 великих тайн космонавтики отзывы

Отзывы читателей о книге 100 великих тайн космонавтики, автор: Станислав Славин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.