My-library.info
Все категории

Нил Тайсон - Смерть в черной дыре и другие мелкие космические неприятности

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Нил Тайсон - Смерть в черной дыре и другие мелкие космические неприятности. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Смерть в черной дыре и другие мелкие космические неприятности
Автор
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
159
Читать онлайн
Нил Тайсон - Смерть в черной дыре и другие мелкие космические неприятности

Нил Тайсон - Смерть в черной дыре и другие мелкие космические неприятности краткое содержание

Нил Тайсон - Смерть в черной дыре и другие мелкие космические неприятности - описание и краткое содержание, автор Нил Тайсон, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Нил Деграсс Тайсон – известный американский астрофизик и популяризатор науки, обладающий особым даром рассказывать о самых сложных научных вопросах понятно, захватывающе и с юмором. В этой книге вы найдете ответы на самые интересные вопросы о Вселенной: «Что будет, если упасть в черную дыру?», «Какие ошибки допускают создатели голливудских фильмов о космосе?», «Зачем построили Стоунхендж?», «Наступит ли когда-нибудь конец света?», «Как могут выглядеть инопланетяне?» и многие другие.Эта книга будет интересна и школьникам, и взрослым, интересующимся наукой.

Смерть в черной дыре и другие мелкие космические неприятности читать онлайн бесплатно

Смерть в черной дыре и другие мелкие космические неприятности - читать книгу онлайн бесплатно, автор Нил Тайсон

Глава сороковая

В начале было…

[6]

Физика описывает поведение вещества, энергии, пространства и времени и их взаимодействие во Вселенной. Судя по всему, что сумели выяснить ученые, то, что делают друг с другом эти четыре главных героя космической драмы, определяет все химические и физические явления. Поэтому все фундаментальное, все знакомое нам, землянам, начинается с законов физики.

Передний фронт открытий почти во всех областях научных исследований, а особенно в физике, лежит в царстве эксперимента. При предельных состояниях вещества, например в окрестностях черной дыры, обнаруживаешь, что гравитация жестоко скручивает близлежащий пространственно-временной континуум. При предельно высоких энергиях поддерживается термоядерный синтез в недрах звезд, когда температура составляет десять миллионов градусов. И при любых мыслимых предельных состояниях обязательно получаешь те самые условия чудовищного жара и чудовищной плотности, которые преобладали во Вселенной в первые мгновения ее существования.

Мы рады сообщить, что никаких предельных физических состояний в повседневной жизни не наблюдается. Обычно по утрам, если все идет нормально, встаешь с постели, слоняешься по дому, что-то ешь, потом выбегаешь за дверь. Родные и близкие полностью рассчитывают на то, что к вечеру ты будешь выглядеть точно так же, как поутру, и вернешься домой целым и невредимым. А теперь представьте себе, что вы приходите на работу, в душный конференц-зал на важное совещание, назначенное на десять ноль-ноль, и вдруг разом теряете все свои электроны – или, хуже того, все атомы, составляющие ваш организм, разлетаются в разные стороны. Или, например, сидите вы в кабинете, стараетесь хоть что-то сделать при свете настольной лампы, и вдруг кто-то включает верхний свет, и от этого ваше тело начинает метаться по комнате, беспорядочно отражаясь от стен, пока вас не выносит в окно. Или вы после работы идете посмотреть соревнования по сумо – и видите, как два сферических господина сталкиваются, исчезают и ни с того ни с сего превращаются в два луча света!

Если бы подобные сцены разыгрывались изо дня в день, современная физика не казалась бы такой диковинной, познания о ее основах естественным образом вытекали бы из нашего жизненного опыта, а наши родные и близкие ни за что не выпускали бы нас из дома на работу. А когда-то, в первые мгновения существования Вселенной, такое происходило сплошь и рядом. Чтобы представить себе и понять, как это было, есть лишь один способ – завести себе здравый смысл иного порядка, выработать иное интуитивное понимание того, как должны действовать законы физики при экстремальных температурах, плотностях и давлении.

Добро пожаловать в мир E = mc².

Версию своей знаменитой формулы Эйнштейн опубликовал в 1905 году в своей эпохальной статье под названием «К электродинамике движущихся тел». Понятия, выдвинутые в этой статье, известны как специальная теория относительности, и они навсегда изменили наши представления о пространстве и времени. Эйнштейну было тогда всего 26 лет. Подробнее он рассказал о своем аккуратненьком уравнении в отдельной и, что примечательно, совсем короткой заметке, которая вышла в свет в том же году – «Зависит ли инерция тела от содержащейся в нем энергии?» Чтобы избавить вас от штудирования этой статьи, организации эксперимента и проверки теории, поясню, что ответ – «Да».

Как писал Эйнштейн:

Если тело отдает энергию L в виде излучения, то его масса уменьшается на L/V² (Здесь L – энергия, V – скорость излучения, то есть, скорость света, поэтому это выражение соответствует более привычной записи E/c². – Прим. перев.) … Масса тела есть мера содержащейся в нем энергии; если энергия изменяется на величину L, то масса меняется соответственно…

(Здесь и далее пер. под ред. И. Тамма)

Эйнштейн не был вполне уверен, что это утверждение истинно, и затем предположил:

Не исключена возможность того, что теорию удастся проверить для веществ, энергия которых меняется в большей степени (например, для солей радия).

Итак, перед вами алгебраический рецепт на все случаи жизни, когда вам захочется преобразовать вещество в энергию или энергию в вещество. Этими простыми словами Эйнштейн невольно подарил астрофизикам вычислительный инструмент E = mc², который позволяет им заглянуть из Вселенной в том виде, в каком она пребывает сейчас, глубоко в прошлое, в самое начало, когда с момента ее рождения миновали ничтожные доли секунды.

Самая известная форма энергии – это фотон, неделимая частица света, лишенная массы. В фотонах мы просто-таки купаемся – к нам долетают фотоны и с Солнца, Луны и звезд, и от газовой плиты, торшера и ночника. Почему же мы не сталкиваемся с E = mc² ежедневно, на личном опыте? Энергия фотонов видимого света несравнимо меньше, чем энергия субатомных частиц с самой маленькой массой. Фотон не может ни во что превратиться, поэтому жизнь его течет счастливо, почти без потрясений.

Хотите приключений? Заведите себе компанию фотонов из гамма-лучей, у которых энергия уже нешуточная, по крайней мере в 200 000 раз больше, чем у видимых фотонов. Правда, вы довольно скоро заболеете раком и умрете, зато успеете увидеть, как везде, где пробегали эти фотоны, возникают пары электронов и позитронов – частица со своей античастицей, одна из множества сладких парочек в субатомном мире. На ваших глазах эти электроны из царства вещества и антивещества будут сталкиваться, аннигилировать и снова создавать гамма-фотоны. Увеличьте энергию света еще в 2000 раз, и вот уже получились гамма-лучи, энергии которых хватит, чтобы превратить впечатлительного человека в Халка. Однако теперь у пар этих фотонов хватает энергии и на то, чтобы спонтанно создавать более массивные нейтроны, протоны и их античастицы.

Высокоэнергичные фотоны где попало не слоняются. Однако места их обитания лежат вовсе не в воображаемом мире. Гамма-лучам подходит любая обстановка, лишь бы температура там была выше нескольких миллиардов градусов.

То, что частицы и их энергетические запасы превращаются друг в друга, играет в космологии определяющую роль. В настоящее время температура расширяющейся Вселенной, вычисленная по наблюдениям микроволнового излучения, заполняющего все космическое пространство, составляет всего 2,73 градуса по Кельвину. Микроволновые фотоны, как и фотоны видимого света, недостаточно горячи и поэтому не могут претендовать на то, чтобы превратиться в частицу по закону E = mc²; строго говоря, мы еще не знаем ни одной частицы, в которую они способны спонтанно превратиться. Однако еще вчера Вселенная была чуть меньше и чуть теплее. А позавчера – еще меньше и еще теплее. Прокрутите стрелки часов еще немного назад, скажем, на 13,7 миллиарда лет, и попадете прямиком в первобытный бульон Большого Взрыва, во времена, когда фоновая температура космоса была так высока, что представляла интерес для астрофизики.

То, как вели себя пространство, время, вещество и энергия по мере расширения и остывания Вселенной с самого ее начала – величайший эпос на свете. Однако, чтобы объяснить, что же происходило в этом космическом горниле, надо найти способ соединить четыре фундаментальные силы Вселенной в одну, а также способ примирить друг с другом две несовместимые области физики – квантовую механику (науку о малом) и общую теорию относительности (науку о большом).

Воодушевленные счастливым союзом квантовой механики и электромагнетизма, заключенным в середине XX века, физики наперегонки стремились наладить отношения между квантовой механикой и общей теорией относительности – создать теорию квантовой гравитации. До финишной прямой мы пока не добрались, зато точно знаем, где стоят барьеры: они находятся на границе «Планковской эпохи». Это фаза развития Вселенной с момента рождения до возраста 1043 секунд и до того, как Вселенная достигла размера 1035 метров в поперечнике. Немецкий физик Макс Планк, в честь которого и названы эти невообразимо малые величины, для которых даже нет подходящих числительных, в 1900 году ввел понятие кванта энергии и в целом считается отцом квантовой механики.

Однако тревожиться не о чем. Плохие отношения между гравитацией и квантовой механикой не сулят современной Вселенной особых сложностей. Астрофизики применяют принципы и инструментарий общей теории относительности и квантовой механики к совершенно разным классам задач. Однако в самом начале, в Планковскую эпоху, большое было малым, а следовательно, гравитация с квантовой механикой, по всей видимости, состояли тогда в близких, страстных, но недолговечных отношениях. Увы, мы до сих пор так и не узнали, какими клятвами обменялись они у алтаря, и поэтому нам не удается сколько-нибудь достоверно описать поведение Вселенной во время этого краткого междуцарствия с помощью каких бы то ни было законов физики (из числа нам известных).


Нил Тайсон читать все книги автора по порядку

Нил Тайсон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Смерть в черной дыре и другие мелкие космические неприятности отзывы

Отзывы читателей о книге Смерть в черной дыре и другие мелкие космические неприятности, автор: Нил Тайсон. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.