My-library.info
Все категории

Сергей Попов - Суперобъекты. Звезды размером с город

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Сергей Попов - Суперобъекты. Звезды размером с город. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Суперобъекты. Звезды размером с город
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
28 январь 2019
Количество просмотров:
183
Текст:
Ознакомительная версия
Читать онлайн
Сергей Попов - Суперобъекты. Звезды размером с город

Сергей Попов - Суперобъекты. Звезды размером с город краткое содержание

Сергей Попов - Суперобъекты. Звезды размером с город - описание и краткое содержание, автор Сергей Попов, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Книга посвящена нейтронным звездам – единственным астрономическим объектам, исследования которых отмечены уже двумя Нобелевскими премиями по физике, и еще две – на подходе. Это говорит о том, что именно они среди всего многообразия небесных тел представляют наибольший интерес для современной физики. Вы узнаете о том, как астрономы наблюдают нейтронные звезды, и какими удивительными объектами они могут быть, а кроме того, у вас будет возможность познакомится с необычными физическими явлениями, связанными с этими суперобъектами.

Суперобъекты. Звезды размером с город читать онлайн бесплатно

Суперобъекты. Звезды размером с город - читать книгу онлайн бесплатно, автор Сергей Попов
Конец ознакомительного отрывкаКупить книгу

Ознакомительная версия.

Точно так же масса, вращение, величина магнитного поля и другие параметры нейтронной звезды несут на себе отпечаток взрыва сверхновой. Частичное выпадение вещества после взрыва обратно на компактный объект может увеличивать массу и уменьшать наблюдаемое магнитное поле, асимметрия взрыва может раскручивать нейтронную звезду и менять направление оси вращения. Чем лучше мы понимаем происхождение начальных свойств нейтронных звезд, тем лучше понимаем физику сверхновых.

Я абсолютно убежден, что в наши дни область астрофизики, изучающая нейтронные звезды, не только находится на стадии роста, но и в течение ближайших лет будет оставаться очень активной областью, которая будет давать много важных результатов не только астрофизикам, но и физикам вообще. То есть она будет полезна для фундаментальной науки в целом. И связь со сложной физикой взрыва сверхновой – лишь один из примеров. Многие другие возникают по мере рассмотрения того, как параметры компактных объектов меняются со временем.

III. Эволюция нейтронных звезд

Астрофизические проявления нейтронных звезд, – т. е. то, какими мы их видим, – зависят от многих параметров: масса, скорость, период вращения, температура, магнитное поле, свойства вещества вокруг… Эволюция нейтронной звезды – это изменение ключевых параметров. Мы обсудим основные из них.

Вращение

У любого объекта есть предельная скорость вращения. Например, скорость вращения на земном экваторе составляет примерно полкилометра в секунду. Если мы начнем раскручивать нашу планету все быстрее и быстрее, то в конце концов она начнет разрушаться. Скорость вращения на экваторе Солнца примерно в 10 раз больше, чем на экваторе Земли. Если Солнце заставить вращаться в сотни раз быстрее, то вещество начнет истекать с солнечного экватора. Это приведет к замедлению вращения. Возникает предельный период. Нельзя заставить Солнце вращаться с периодом около часа. Нейтронные звезды могут вращаться очень быстро, потому что они компактные и плотные. Для них предельный период составляет менее одной тысячной доли секунды. Это соответствует скорости примерно 1/5 от скорости света! Дальше даже такие компактные объекты начинают истекать.

Нейтронные звезды могут иметь очень короткий период вращения, в том числе близкий к предельному, уже при своем рождении или приобретать его в ходе эволюции (раскручиваясь в двойных системах за счет аккреции вещества со второй звезды). Анализ данных наблюдений показывает, что практически все эти компактные объекты при рождении имеют периоды существенно менее одной секунды. Такую особенность легко объяснить. Нейтронная звезда появляется на свет в результате коллапса ядра звезды. Его размеры уменьшаются в тысячи раз. Все знают, что если вращающийся объект сжимается, то скорость вращения увеличивается. Простые оценки показывают, что звездное ядро в результате коллапса может легко раскрутиться до периода в доли секунды.

Вращение может быть настолько быстрым, что на какое-то время предотвратит образование черной дыры. Масса компактного объекта может быть большой, но превращение в черную дыру определяется плотностью в центре. Быстрое вращение понижает эту плотность. Поэтому какое-то время, пока новорожденный объект имеет короткий период, окончательный коллапс не происходит. Лишь спустя какое-то время, обреченная нейтронная звезда схлопнется. Такие, как говорят, метастабильные объекты называют супрамассивными нейтронными звездами. Теоретики любят привлекать их там, где им хочется сделать двухстадийный коллапс с дополнительным энерговыделением в промежутке (источником энергии служит вращение супрамассивного объекта).


Быстровращающаяся нейтронная звезда, замедляясь, может сколлапсировать в черную дыру из-за роста центральной плотности. По мере торможения вращения в центре растет плотность, и вещество может начать переходить в новую фазу. Область новой фазы, т. е. состоящая уже из других частиц, будет расти. Этот процесс может завершиться коллапсом.


В течение своей жизни нейтронная звезда может и замедлять свое вращение, и ускорять (но, конечно, не быстрее предельного). Для ускорения необходимо какое-то внешнее воздействие, а замедление может происходить и без участия внешних объектов. История нейтронной звезды обычно начинается с замедления.

Нейтронная звезда чаще всего рождается как радиопульсар. Даже если сам механизм радиоизлучения по какой-то причине оказывается подавленным (как, например, в центральных компактных объектах в остатках сверхновых), замедление вращения одиночной нейтронной звезды происходит примерно по одинаковому сценарию. У нас есть быстровращающийся «шарик» с магнитным полем. Такой объект должен излучать электромагнитные волны и ускорять заряженные частицы. В приложении к нейтронным звездам впервые на это указал Франко Пачини в 1967 году (т. е. прямо перед открытием радиопульсаров, хотя сам феномен пульсара не был предсказан). На излучение волн и ускорение частиц нужна энергия. Она берется из вращения, т. е. наш «шарик» будет замедляться. Время, затрачиваемое на один оборот, будет увеличиваться.

Энергия уносится потоком волн и частиц. Интенсивность излучения зависит от частоты вращения и величины магнитного поля. По мере замедления вращения энергии будет излучаться все меньше. Это означает, что будет падать давление, оказываемое дующим от нейтронной звезды «ветром» на внешнюю среду. Вначале давление обычно достаточно велико, поэтому пульсар «не знает» о том, что вокруг не пустота. Но со временем присутствие вещества будет все заметнее. Оно стремится подобраться поближе к нейтронной звезде. Это стремление связано как с давлением самого вещества (оно, во-первых, определяется температурой и плотностью вещества, а во-вторых, есть «лобовое давление», связанное со скоростью вещества относительно нейтронной звезды), так и с гравитацией. Если вещество вошло в область гравитационного влияния нейтронной звезды, то она сама начнет «натягивать» его на себя. В конце концов, ветер волн и частиц не сможет сопротивляться внешнему давлению, и вещество начнет проникать в магнитосферу. Это выключает не только пульсарный механизм (обычно он перестает работать еще раньше), но и весь процесс генерации ветра релятивистских частиц. Замедлившись до критического значения периода вращения, нейтронная звезда переходит на следующую эволюционную стадию.

Если первую стадию жизни нейтронной звезды называют эжектором (потому что вещество и волны активно эжектируются – выбрасываются – во внешнюю среду), то вторая стадия получила название пропеллера. Впервые ее рассмотрел в самом начале 1970-х годов Викторий Шварцман. Но мировую известность она получила в 1975-м благодаря статье Андрея Илларионова и Рашида Сюняева.

На этой стадии падение вещества на поверхность остановлено быстро вращающейся магнитосферой (которая вращается вместе со звездой, поскольку силовые линии «вморожены» в кору). Дело в том, что падающее вещество – это плазма. Вещество плазмы ионизовано, а заряженные частицы взаимодействуют с магнитным полем. Им очень тяжело двигаться поперек силовых линий (поэтому на Земле красивые сияния происходят в основном вблизи магнитных полюсов, за что их и называют полярными). Иногда говорят, что частицы сидят на силовых линиях как бусины на проволоке. На самом деле их поведение сложнее, но для нас важно, что плазма, как говорят, «вморожена» в магнитное поле. Плазме тоже, как и отдельным заряженным частицам, трудно двигаться поперек силовых линий. Поэтому магнитное поле может остановить поток вещества.

Если скорость вращения магнитного поля в данном месте превышает круговую скорость движения плазмы, то вращающиеся силовые линии магнитного поля работают как пропеллер, пытаясь разбросать вещество. Энергия вращения нейтронной звезды через магнитное поле передается веществу, часть которого может улететь вдоль силовых линий. Это приводит к очень быстрому торможению вращения нейтронной звезды. Поэтому стадия пропеллера достаточно короткая, и застать на ней нейтронную звезду довольно маловероятно. К тому же на этой стадии обычно нет мощного энерговыделения, так что и ярких источников здесь не получишь. Хотя кандидаты есть, их находят в тесных двойных системах, где вещество перетекает с нормальной звезды на слишком быстро вращающуюся нейтронную.

Постепенно время оборота нейтронной звезды вокруг своей оси растет. Медленно вращающийся пропеллер уже не может задержать поток вещества. Оно попадает на поверхность. Начинается аккреция.

Теперь вращение нейтронной звезды может и ускоряться, и замедляться. Падающее вещество может приносить с собой момент импульса (иногда употребляют и другой термин – угловой момент), т. е. может раскручивать нейтронную звезду[9]. Но взаимодействие магнитного поля с потоком вещества должно тормозить вращение. Обычно, если внешние условия не меняются, устанавливается равновесие. Особенно ярко это проявляется у рентгеновских пульсаров – аккрецирующих нейтронных звезд в тесных двойных системах. Период пульсаций излучения – это, как и у радиопульсаров, период вращения компактного объекта. Только источником энергии теперь служит не вращение, а потенциальная (гравитационная) энергия падающего вещества. Наблюдения демонстрируют, что часть аккрецирующих пульсаров показывает увеличение периода, а часть – уменьшение. Часто мы видим, что какой-то рентгеновский пульсар то ускоряется, то тормозится. Но обычно это колебания вблизи положения равновесия, когда торможение и ускорение примерно уравновешивают друг друга. Это равновесие крайне важно, так как если есть хорошая модель аккреции, то знание равновесного периода позволяет оценить магнитное поле нейтронной звезды, чем астрофизики активно пользуются. Зачастую другого способа хотя бы примерно узнать величину поля аккрецирующей нейтронной звезды просто нет.

Ознакомительная версия.


Сергей Попов читать все книги автора по порядку

Сергей Попов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Суперобъекты. Звезды размером с город отзывы

Отзывы читателей о книге Суперобъекты. Звезды размером с город, автор: Сергей Попов. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.