Есть ли абсолютная граница могущества и сложности для человека и его творений, абсолютная граница могущества и сложности для саморазвивающихся систем вообще? Основатель кибернетики, сравнивая человеческий мозг с «рогами последних титанотериев», указывает нам на внутреннюю тенденцию очень сложных систем к самораспаду, к «сумасшествию». «Человеческий мозг, вероятно, уже слишком велик, чтобы он мог эффективно использовать все средства, которые кажутся наличными анатомически…»[77]
Проблема кризиса сложности — это та же проблема борьбы порядка с хаосом, проблема сохранения счастливых антиэнтропийных островков в бушующем море случайностей. Мы уже говорили, что даже стремление Вселенной к асимптотической тепловой смерти, по-видимому, не устанавливает абсолютной верхней границы для жизни таких островков. Можно ли заключить отсюда, что не существует и абсолютной верхней границы сложности систем? Система в борьбе с самораспадом может переживать кризисы сложности, но выбираться из них и достигать высших уровней сложности. В частности, дефекты мозга не являются неустранимыми, коль скоро допускается возможность преобразования человеком своей физической природы. Впрочем, это вопросы науки будущего, на которые она сумеет ответить лучше нас.
* * *
Мы возвращаемся к книге. В предыдущем обзоре были высказаны некоторые мысли по поводу ее содержания и значения. Сложность [c.27] предмета очевидна, и наши оценки нельзя считать ни полными, ни окончательными. Программа, изложенная в винеровской книге, завоевала признание и оказала уже немалое воздействие на мировую науку, но в ней далеко не все раскрыто и истолковано; кибернетике еще предстоит найти свои строгие, классические формы. Знаменитое сочинение Винера нуждается во внимательном, критическом прочтении. Критика и оценка этой книги — дело специалистов многих профилей, представителей многих наук; нужна здесь и острая мысль философа. Итогом будут новые книги, которые откроют нам новые горизонты.
Несколько слов о переводе. Сложность и своеобразие книги делают последнюю задачу отнюдь не тривиальной. При первом русском переводе пришлось столкнуться с большими трудностями. Для настоящего издания текст перевода заново отредактирован и по возможности исправлен с учетом поправок автора во втором английском издании[78]. К сожалению, и второе английское издание в этом отношении оставляет желать лучшего. По существу, книга нуждается в специальных комментариях, которыми она когда-нибудь непременно обрастет. Нами увеличено также число приложений: помещенные в них материалы позволяют полнее судить о взглядах автора.
Заключая свое предисловие, я хотел бы напомнить мудрые слова шекспировского Гамлета: «И в небе, и в земле сокрыто больше, чем снится вашей мудрости, Горацио». Не таков ли окончательный урок кибернетики?
Г.Н. Поваров
Москва,
март 1967 г. [c.28]
Предисловие ко второму изданию
Когда тринадцать лет тому назад я готовил первое издание «Кибернетики», работу мою затрудняли некоторые серьезные помехи, следствием чего были многочисленные опечатки наряду с отдельными ошибками в содержании. Ныне, думается, настало время пересмотреть кибернетику не только как программу для будущего, но и как существующую науку. Поэтому я воспользовался настоящей возможностью, чтобы внести необходимые исправления для моих читателей и одновременно дополнить книгу изложением современного состояния предмета и новых близких идей, появившихся со времени первого издания.
Если какая-либо новая отрасль науки является действительно жизненной, то центр интереса в ней с годами неизбежно должен перемещаться. Когда я писал «Кибернетику» в первый раз, главное препятствие для меня заключалось в том, что понятия статистической теории информации и управления были тогда новы и даже в какой-то мере противоречили установившимся взглядам. Теперь они стали обычным орудием инженеров связи и разработчиков автоматического оборудования, и главная опасность, мне угрожающая, состоит в том, что книга может показаться банальной. Значение обратной связи в техническом проектировании и в биологии твердо установлено. Значение информации и методика ее измерения и передачи составляют целый предмет изучения для инженера, физиолога, психолога и социолога. Автоматы, о которых в первом издании книги делались лишь предсказания, заняли подобающее [c.29] им место, и связанные с этим социальные опасности, против которых я предостерегал не только в данной книге, но и в небольшой популярной работе «Человеческое использование человеческих существ»[79], видны теперь отовсюду.
А потому кибернетику надлежит спешить к новым областям и обратить побольше внимания на идеи, возникшие уже в последнее десятилетие. Простые линейные обратные связи, изучение которых сыграло такую большую роль в пробуждении интереса ученых к кибернетическим исследованиям, оказываются совсем не такими простыми и линейными, как представлялось сначала. В самом деле, в ранние дни теории электрических цепей ее математические ресурсы не шли дальше линейного комбинирования сопротивлений, емкостей и индуктивностей. Это означало, что весь предмет можно было достаточно верно описать в терминах гармонического анализа передаваемых сообщений и величин импедансов, адмиттансов и отношений напряжений в цепях, через которые проходят эти сообщения.
Задолго до выхода в свет «Кибернетики» стало ясно, что изучение нелинейных цепей (таких, какие мы находим в различных усилителях, ограничителях напряжения, выпрямителях и т. д.) не умещается в эти рамки. Тем не менее за отсутствием лучшей методики предпринимались многочисленные попытки распространить линейные понятия прежней электротехники далеко за те границы, в которых они допускали естественное представление новых элементов.
Когда около 1920 г. я пришел в МТИ, обычный способ подхода к нелинейным устройствам состоял в том, что искалось расширенное понятие импеданса, которое охватывало бы как линейные, так и нелинейные системы. В результате нелинейная электротехника пришла в состояние, подобное состоянию птолемеевой системы астрономии в последний период ее существования, когда нагромождали эпицикл на эпицикл, поправку на поправку, пока все это латаное сооружение не рухнуло под собственной тяжестью. [c.30]
Как из крушения перенапряжений птолемеевой системы возникла коперникова система с ее простым и естественным гелиоцентрическим описанием движений небесных тел, заменившим сложную и запутанную картину геоцентрической птолемеевой системы, так и для изучения нелинейных устройств и систем, электрических или механических, естественных или искусственных была необходима совершенно новая отправная точка. Я попытался нащупать новый подход в своей книге «Нелинейные задачи в теории случайных процессов»[80].
Оказывается, что с переходом к нелинейным явлениям тригонометрический анализ теряет ту ведущую роль, которая ему принадлежит в изучении линейных явлений. Это имеет четкое математическое объяснение. Процессы в электрических цепях, как и многие другие физические явления, характеризуются инвариантностью при сдвиге начала отсчета во времени. Физический опыт, начатый в полдень и достигший определенного состояния к 2 часам дня, должен достигнуть такого же состояния к 2.15, если мы начнем его в 12.15. Таким образом, физические законы говорят об инвариантах группы сдвигов во времени.
Тригонометрические функции sin nt и cos nt обнаруживают важные инвариантные свойства относительно той же группы сдвигов. Функция общего вида eit перейдет в функцию
eiω(t+τ) = eiωτ eiωt
того же вида при сдвиге, который получается прибавлением τ к t. Как следствие,
a cos n (t + τ) + b sin n (t + τ) = (a cos nτ + b sin nτ) cos nt + (b cos nτ — a sin nτ) sin nt =
= a1 cos nt + b1 sin nt.
Иными словами, семейства функций
Аеiωt и A cos ωt + B sin ωt
инвариантны при сдвиге. [c.31]
Но существуют и другие семейства функции, инвариантные при сдвигах. Если рассматривать так называемое случайное блуждание, когда перемещение частицы за любой промежуток времени имеет распределение, зависящее от длительности этого промежутка и не зависящее от событий, происшедших до его начала, то ансамбль случайных блужданий также перейдет в себя при временном сдвиге.