My-library.info
Все категории

Интернет-журнал "Домашняя лаборатория", 2007 №11 - Журнал «Домашняя лаборатория»

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Интернет-журнал "Домашняя лаборатория", 2007 №11 - Журнал «Домашняя лаборатория». Жанр: Газеты и журналы / Периодические издания / Сделай сам / Хобби и ремесла год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Интернет-журнал "Домашняя лаборатория", 2007 №11
Дата добавления:
15 ноябрь 2023
Количество просмотров:
17
Читать онлайн
Интернет-журнал "Домашняя лаборатория", 2007 №11 - Журнал «Домашняя лаборатория»

Интернет-журнал "Домашняя лаборатория", 2007 №11 - Журнал «Домашняя лаборатория» краткое содержание

Интернет-журнал "Домашняя лаборатория", 2007 №11 - Журнал «Домашняя лаборатория» - описание и краткое содержание, автор Журнал «Домашняя лаборатория», читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Большой и увлекательный, научно-прикладной, образовательный, некоммерческий интернет-журнал, созданный группой энтузиастов. Журнал содержит материалы, найденные в Интернет или написанные для Интернет. Основная тематика статей — то, что можно сделать самому, от садовых поделок до сверхпроводников, но есть и просто полезные материалы.

Интернет-журнал "Домашняя лаборатория", 2007 №11 читать онлайн бесплатно

Интернет-журнал "Домашняя лаборатория", 2007 №11 - читать книгу онлайн бесплатно, автор Журнал «Домашняя лаборатория»
Эта часть была и наиболее яркой, по своему внешнему виду (кроме формы) весьма напоминая электроразрядный факел в воздухе, получаемый в плазмотронах, с температурой плазмы порядка 13000 — 16000 градусов. Центральная часть молнии была окружена областью толщиной 1–2 см с густым фиолетовым свечением, очень похожим на свечение воздуха при давлении 0.1 мм. рт. ст., бомбардируемого электронами с энергией в несколько десятков электрон-вольт. Следующая, наружная оболочка, толщиной около 2 см, также была неоднородна, напоминая по цвету тихий электрический разряд при атмосферном давлении или периферийное свечение электронного пучка с энергией в несколько десятков кило-электрон-вольт, попадающего из вакуумной трубки в воздух при обычном давлении. Светло-голубое свечение этой части молнии быстро убывало с увеличением расстояния от центрального шара, постепенно сходя на нет. Оболочки молнии хорошо просматривались только в горизонтальном направлении. В нижней части они, вероятно, были сжаты и их можно было различить только при сопоставлении с боковыми частями молнии. Над молнией сверху оболочки были значительно толще, но не так резко выражены. Кроме того, в них можно было видеть отдельные яркие конвективные струи (как над обычным костром, только цвет их был с беловатым оттенком). Общий диаметр шара составлял около 11–12 см в горизонтальном направлении и около 14–16 см в вертикальном. С расстояния в несколько десятков метров наблюдалась, по-видимому, только центральная часть шара. Издали молния имела синеватый оттенок. В молнии, по-видимому, всё время выделялась энергия. На это указывали сплошной шорох и сильные отдельные потрескивания. Вероятно, беспрерывно происходила и утечка её заряда. Выделение энергии резко увеличивалось при соприкосновении молнии с поверхностями (листьями или сучками) и сопровождалось более сильным треском и искрением. Молния оставила после себя сильный запах, по своему характеру почти совпадающий с запахом воздуха, подвергнутого воздействию ионизирующего излучения.

Как видно из приведённого текста, шаровая молния Дмитриева имела вертикальную ось симметрии, совпадающую с осью вращения электронного облака в нашей модели ШМ и с направлением внутреннего магнитного поля. В магнитных полях, на порядок меньших, чем в (6), радиус вращения ионов R вырастает приблизительно до величины половины радиуса ШМ. При этом возникает только одна устойчивая ионная орбита, которая отмечает положение ядра ШМ. Внутреннее ионное облако молнии Дмитриева было вытянуто в вертикальном направлении, а все оболочки хорошо просматривались только в горизонтальном направлении. О вращении частиц в оболочках с дифференциальной скоростью говорили отдельные яркие конвективные струи. По предположению Дмитриева, светло-голубое свечение внешней оболочки напоминает тихий электрический разряд с энергией электронов в десятки килоэлектронвольт. Найдём потенциал нашей модели ШМ при её радиусе и заряде согласно (4):

φ = Q/4πεε0r = 500 кВ. (12)

Поскольку заряд ШМ положительный, то она будет бомбардироваться электронами и отрицательными ионами из окружающей атмосферы с приобретаемой ими энергией от прохождения разности потенциалов вплоть до величины (12). Известно, что пробег электронов в воздухе ограничивается различными потерями и при начальной энергии электронов в 500 кэВ не превышает 1 м. На самом деле начальная энергия электронов воздуха мала и они в электрическом поле ШМ приобретут существенно меньшую энергию. Если считать, что зона ускорения электронов вблизи равна Δr = 1 см (что соответствует напряжённости электрического поля, пробивающей воздух, от заряда Q нашей модели ШМ), то из (12) следует:

U = qΔφ = qQΔr/4πεε0r2 = 30 кэВ.

что соответствует наблюдениям Дмитриева. Если заряд ШМ велик, то её наблюдаемый радиус может быть больше настоящего за счёт светящейся короны вокруг неё.

Светимость обычной ШМ среднего размера можно объяснить излучательными переходами атомов и молекул и постепенной рекомбинацией ионов воздуха внутри ШМ, так что её энергия только за счёт излучения непрерывно убывает со скоростью до 2 Дж в секунду. Отношение площади поверхности к объёму растёт по мере уменьшения радиуса, следовательно, маленькие ШМ израсходуют всю свою энергию на излучение и теплоотдачу в окружающую атмосферу быстрее, за время порядка долей и единиц секунд, и это действительно наблюдают как у природных, так и у искусственных ШМ при коротких замыканиях электрооборудования.

В связи со строением ШМ интересно рассмотреть некоторые случаи из [3]. ШМ довольно редко представляет собой правильную сферу, скорее это масса неправильной формы, иногда с несколькими выступами. Некоторые ШМ кажутся полыми, овальными, сердцевидными, грушевидными, яйцевидными или в виде тора или кольца. В случае в Париже в 184 9 г. у ШМ возникли искры и огненные языки, которые как будто вырывались из отверстия в шаре. При увеличении отверстия ШМ взорвалась с молниеподобным разрядом. После этого наблюдалось ещё некоторое яркое свечение.

В случае 194 9 г. в ФРГ после распада ШМ осталась её часть, напоминающая по форме молодой месяц, повёрнутый рогами вниз. Распад этой ШМ сопровождался искрами длиной до 30 см. Прикреплённые к предметам ШМ исчезают обычно как бы кипя и выбрасывая искры. По статистике до 50 % всех наблюдаемых ШМ оканчивают свою жизнь с небольшим взрывом. В рамках нашей модели описанные свойства ШМ можно объяснить тем, что внешняя оболочка может иметь не только сферическую, но и ступенчатую форму, демонстрируя тем самым некоторую независимость отдельных токовых колец. В течение жизни ШМ отдельные кольца в силу неустойчивости или взаимодействия с окружающими предметами разрываются и из ШМ вылетают потоки быстрых электронов и плазмы в виде искр. Иногда ШМ просто разделяется на несколько маленьких ШМ. Маломощные ШМ в отсутствие взаимодействий с окружением будут просто разряжаться почти беззвучно и без особых эффектов.

Заключение

По данным наблюдений ШМ часто вращаются в воздухе или катятся по предметам. При опускании на рыхлую землю или торф ШМ способны вырыть ямы или разбросать землю. На быстрое движение частиц в ШМ указывает и то обстоятельство, что в некоторых случаях контакта с ней люди получали ожоги как от электрического тока, а предметы нагревались или оплавлялись. Согласно предлагаемой нами модели физическая природа ШМ такая же, как и у обычной молнии.

Так как движение частиц в ШМ в основном вращательное, а в линейной молнии поступательное, то с философской точки зрения оба типа дают ещё один пример действия принципа дополнительности в природе. Следует сказать, что для построения модели ШМ были использованы те же идеи, что ив [9] при описании схемы возникновения электрического заряда у элементарных частиц.

Список литературы

1. Барри Дж. Шаровая молния и четочная молния. М.: Мир, 1983. - 288 с.

2. Смирнов Б.М. Проблема шаровой молнии. М.: Наука, 1988. - 208 с.

3. Сингер С. Природа шаровой молнии. М.: Мир, 1973. - 239 с.

4. Стаханов И. П. О физической природе шаровой молнии. М.: Энергоатомиздат, 1985. - 209 с.


Журнал «Домашняя лаборатория» читать все книги автора по порядку

Журнал «Домашняя лаборатория» - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Интернет-журнал "Домашняя лаборатория", 2007 №11 отзывы

Отзывы читателей о книге Интернет-журнал "Домашняя лаборатория", 2007 №11, автор: Журнал «Домашняя лаборатория». Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.