My-library.info
Все категории

Рассуждение о методе. С комментариями и иллюстрациями - Рене Декарт

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Рассуждение о методе. С комментариями и иллюстрациями - Рене Декарт. Жанр: Зарубежная образовательная литература / Науки: разное год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Рассуждение о методе. С комментариями и иллюстрациями
Дата добавления:
19 ноябрь 2022
Количество просмотров:
41
Читать онлайн
Рассуждение о методе. С комментариями и иллюстрациями - Рене Декарт

Рассуждение о методе. С комментариями и иллюстрациями - Рене Декарт краткое содержание

Рассуждение о методе. С комментариями и иллюстрациями - Рене Декарт - описание и краткое содержание, автор Рене Декарт, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Рене Декарт – выдающийся математик, физик и физиолог. До сих пор мы используем созданную им математическую символику, а его система координат отражает интуитивное представление человека эпохи Нового времени о бесконечном пространстве. Но прежде всего Декарт – философ, предложивший метод радикального сомнения для решения вопроса о познании мира. В «Правилах для руководства ума» он пытается доказать, что результатом любого научного занятия является особое направление ума, и указывает способ достижения истинного знания. В трактате «Первоначала философии» Декарт пытается постичь знание как таковое, подвергая все сомнению, и сформулировать законы физики.
Тексты снабжены подробными комментариями и разъяснениями.
В формате PDF A4 сохранен издательский макет книги.

Рассуждение о методе. С комментариями и иллюстрациями читать онлайн бесплатно

Рассуждение о методе. С комментариями и иллюстрациями - читать книгу онлайн бесплатно, автор Рене Декарт
сказанное нами в правиле V. Даже в самых легких человеческих искусствах есть весьма много вещей, метод нахождения которых всецело заключается в правильном установлении этого порядка. Так, если нужно составить полную анаграмму из перестановки букв какого-либо имени, то нет нужды ни переходить от более простого к более сложному, ни различать абсолютное и относительное – эти приемы здесь совершенно неуместны; в перестановке рассматриваемых букв достаточно будет установить лишь такой порядок, чтобы одно и то же сочетание никогда не рассматривалось дважды, например, разбить их на определенные группы так, чтобы сразу же можно было увидеть, в какой из них можно скорее найти искомое. Таким образом, эта работа отнимет очень немного времени и покажется лишь детской забавой.

Впрочем, не нужно отделять друг от друга эти три последних правила. Большей частью нужно держать их в уме все одновременно, ибо они одинаково способствуют совершенствованию метода. Безразлично, какое из них мы будем заучивать в первую очередь. Мы изложили их здесь в немногих словах потому, что в оставшейся части этого трактата мы не будем заняты ничем иным, кроме изложения в частности всего того, что мы обозрели здесь в целом.

Энумерация занимает важное место в познании. Для достоверного познания достаточно интуиции и дедукции. Но как быть, если мы сталкиваемся с чем-то изначально непонятным и не можем установить те самоочевидные истины, из которых можно было бы вывести достоверное знание? Тут на помощь приходит энумерация. С ее помощью мы выстраиваем цепочки рассуждений, учитывающие достаточное количество факторов, чтобы прийти к исходным достоверным предпосылкам.

Правило VIII

Если в ряде исследуемых вещей встретится какая-либо одна, которую наш ум не может достаточно хорошо понять, то нужно на ней остановиться и не исследовать других идущих за ней, воздерживаясь от лишнего труда

Данное простое правило направлено на то, чтобы исследователь не делал ненужной работы, поскольку лучше заранее избежать ошибок, чем исправлять их впоследствии. Однако если что-то в процессе познания вызывает принципиальные затруднения, связанные с самой природой объекта, это не должно останавливать.

Три предшествующих правила предписывают и объясняют порядок; настоящее же указывает, когда он является совершенно необходимым и когда только полезным. Ведь то, что составляет цельную ступень в лестнице, ведущей от относительного к абсолютному или наоборот, необходимо должно быть рассмотрено прежде всего остального. Но если, как это часто имеет место, множество вещей относится к одной и той же ступени, то всегда бывает полезно просмотреть их по порядку. Однако соблюдение этого правила не обязательно должно быть точным и строгим. Большей частью, хотя бы мы ясно поняли не все вещи, а лишь немногие или даже какую-нибудь одну из них, мы можем переходить дальше.

Это правило с необходимостью вытекает из положений, приведенных в правиле II. Однако не нужно думать, что оно не содержит в себе ничего нового, расширяющего наши знания, хотя и кажется лишь удерживающим нас от исследования некоторых вещей, и не сообщает никаких истин, кроме того, что учит новичков лишь не тратить напрасно силы, исходя почти из тех же соображений, которые приведены в правиле II. Но тому, кто хорошо усвоил семь предыдущих правил, оно указывает, каким образом можно удовлетвориться в любых научных исследованиях настолько, чтобы больше ничего не желать, ибо всякий, кто в разрешении какой-либо трудности строго соблюдал первые правила и при всем том согласно предписанию этого правила остановился на чем-нибудь, тот будет твердо убежден, что знание, к которому он стремится, недостижимо никакими способами не только по причине несовершенства ума, но и потому, что этому противостоит сама природа, трудности или человеческое состояние. Такое познание является не менее ценным, чем то, которое вскрывает самое природу вещей, и тот, кто в этом случае будет простирать свое любопытство дальше, может показаться безумцем.

Это правило имеет очень важное следствие. Порой просто невозможно исследовать все предпосылки в рамках одной науки, и тогда нужно либо остановиться, либо продолжить в рамках подхода другой. Эту мысль Декарт демонстрирует на примере математики и оптики, что ставит перед нами проблему определения границ научного знания.

Поясним все это одним или двумя примерами. Если, например, кто-нибудь, занимавшийся исключительно математикой, отыскивает линию, называемую в диоптрике анакластической, линию, в которой параллельные лучи преломляются таким образом, что после преломления они все пересекаются в одной точке, то он, конечно, легко заметит по правилам V и VI, что определение этой линии зависит от отношения между углами преломления и падения, но, поскольку этот человек не может произвести такого исследования, так как оно относится к области физики, а не математики, он должен остановиться на его пороге, и в разрешении этой задачи ему не могут оказать никакой помощи ни философы, ни опыт, если он вздумает к ним прибегнуть; этим он нарушил бы именно правило III. Кроме того, это положение будет до известной степени сложным и относительным, а опыт может дать достоверное знание только в отношении самого простого и абсолютного, как это мы покажем в своем месте. Тщетно будет он также предполагать некоторое соотношение между этими двумя углами, считая его абсолютно верным, ибо тогда он будет искать не анапластическую линию, а только линию, которая могла бы быть ею по его предположению.

Но если кто-нибудь, сведущий не только в математике и желающий по правилу I достичь знаний обо всем, с чем он встречается, встретится с этой трудностью, то он найдет далее, что отношение между углом падения и углом преломления зависит от изменения их вследствие различия сред, что это изменение в свою очередь зависит от того, как луч проходит через все прозрачное тело, что знание свойств проникновения света предполагает уже известной природу света и что, наконец, для понимания действия света нужно знать, что такое естественная сила вообще, – последнее положение абсолютнейшее из всех. После того, как посредством интуиции


Рене Декарт читать все книги автора по порядку

Рене Декарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Рассуждение о методе. С комментариями и иллюстрациями отзывы

Отзывы читателей о книге Рассуждение о методе. С комментариями и иллюстрациями, автор: Рене Декарт. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.