My-library.info
Все категории

Апостолос Доксиадис - Дядюшка Петрос и проблема Гольдбаха

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Апостолос Доксиадис - Дядюшка Петрос и проблема Гольдбаха. Жанр: Современная проза издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Дядюшка Петрос и проблема Гольдбаха
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
12 декабрь 2018
Количество просмотров:
106
Читать онлайн
Апостолос Доксиадис - Дядюшка Петрос и проблема Гольдбаха

Апостолос Доксиадис - Дядюшка Петрос и проблема Гольдбаха краткое содержание

Апостолос Доксиадис - Дядюшка Петрос и проблема Гольдбаха - описание и краткое содержание, автор Апостолос Доксиадис, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Это – роман, переведенный на все основные языки мира и имевший огромный успех более чем в двадцати странах.Это – новая страница в творчестве Апостолоса Доксиадиса, блестяще-интеллектуального представителя школы "литературного космополитизма", доселе известной читателю лишь по произведениям Кадзуо Ишигуро и Милана Кундеры.История чудаковатого дядюшки, всю свою жизнь положившего на решение принципиально неразрешимой научной проблемы, под пером Доксиадиса превращается в стильный "РОМАН ИДЕЙ"…Это – "Дядя Петрос и проблема Гольдбаха". Книга, читать которую БЕСКОНЕЧНО ИНТЕРЕСНО…

Дядюшка Петрос и проблема Гольдбаха читать онлайн бесплатно

Дядюшка Петрос и проблема Гольдбаха - читать книгу онлайн бесплатно, автор Апостолос Доксиадис
Назад 1 ... 25 26 27 28 29 30 Вперед

[10] Мой рассказ – не автобиография, поэтому я не буду обременять читателя дальнейшими подробностями моего прогресса в математике. (Кому любопытно, могу сообщить, что он шел «медленно, но верно».) В силу этого факты моей жизни будут упоминаться только в тех пределах, в которых они имеют отношение к истории дяди Петроса. – Примеч. автора.

[11] «Principia Mathematica» – фундаментальная работа логиков Рассела и Уайтхеда, опубликованная в 1910 году, в которой они взяли на себя титанический труд построения математических теорий на твердом фундаменте логики. – Примеч. автора.

[12] весьма моден (фр.).

[13] Наибольшая известная такая пара столь велика, что ее почти невозможно себе представить: 83533539014 +/- 1. – Примеч. автора.

[14] Пусть k – заданное целое число. Множество (k +2)! + 2, (k +2)! + 3, (k +2)! + 4, (k +2)! + (k +1), (k +2)! + (k +2) содержит k натуральных чисел, среди которых нет ни одного простого, поскольку они делятся на 2, 3, 4, k +1 и k +2 соответственно. Символ k! (читается «ка факториал») означает произведение всех натуральных чисел от 1 до k. – Примеч. автора.

[15] Числа вида а + bi где а и b – вещественные числа, a i – мнимый квадратный корень из 1. – Примеч. автора.

[16] Утверждение состоит в том, что любое нечетное число, большее 5, представляется в виде суммы трех простых.

[17] неизвестная земля (лат.).

[18] В своей новаторской работе «Природа математического открытия» Анри Пуанкаре развенчивает миф о математике как о полностью рациональном существе. Пользуясь историческими примерами, а также примерами из собственного опыта, он специально подчеркивает роль бессознательного в работе исследователя. По его словам, великие открытия часто происходят неожиданно, вспышкой озарения, наступающего в моменты отдыха – конечно, такое может произойти только с умами, подготовленными долгими месяцами и годами работы сознания. В этом аспекте работы математического ума подобные сны-откровения могут играть важную роль, являясь иногда тем каналом, по которому подсознание сообщает сознанию свои выводы. – Примеч. пер.

[19] непознаваемое; букв, «не узнаем, не будем знать» (лат). – Примеч. пер.

[20] Что и требовалось доказать (лат.).

[21] Следовательно (лат.).

[22] Эту гипотезу в общей форме высказал Ферма, очевидно, обобщив старое наблюдение, что это верно для первых значений n, например

– все это простые числа. Однако потом было показано, что для п = 5,

результат, равный 4 294 967 297, уже не является простым числом, поскольку имеет простые делители 641 и 6 700 417. Гипотезы не всегда оказываются верны! – Примеч. автора.

[23] Харди также вспоминает этот случай в «Апологии математика», но не упоминает о присутствии моего дяди. – Примеч. автора.

[24] Действительно: 1729 = 123 + 13 = 103 + 93 – свойство, которым ни одно меньшее

натуральное число не обладает. – Примеч автора.

[25] К. Кавафи, «Итака». – Примеч. автора.

[26] «нежелательным иностранцем» (лат.).

[27] Букв, «я не знаю, что» (фр.).

[28] Великие нерешенные проблемы, поставленные Давидом Гильбертом на Международном конгрессе математиков в 1900 году. Некоторые, например Восьмая проблема (гипотеза Римана), не решены до сих пор, но в других был достигнут прогресс, а некоторые решены полностью – например, Пятая, решенная Глизоном, Монтгомери и Циппеном, Десятая – Девисом, Робинсоном и Матиясевичем, Четырнадцатая, отрицательно решенная Нагатой, Двадцать Вторая, решенная Делинем. – Примеч. автора.

[29] Букв, «ужасный ребенок» (фр.). Человек, смущающий окружающих своей прямотой, необычностью взглядов, своевольный, дерзкий, чудаковатый. – Примеч. ред.

[30] Гёдель закончил жизнь в 1978 году в больнице графства Принстон, где лечился от болезни мочевыделительного тракта. Выбранный им способ самоубийства был, как и его великая теорема, весьма оригинален: он умер от истощения, отказываясь принимать пищу более месяца в убеждении, что врачи хотят его отравить. – Примеч. автора.

[31] моя вина (лат.) – формула покаяния. – Примеч. пер.

[32] Таинственные решения знаменитых проблем шарлатанами продаются сотнями на грош в базарный день. – Примеч. автора.

[33] Удивительно, но последняя теорема Ферма была доказана в 1993 году. Сперва Герхард Фрей предположил, что проблема, возможно, сводится к некоей недоказанной гипотезе в теории эллиптических кривых, так называемой гипотезе Танияма – Шимура – прозрение, впоследствии строго доказанное Кеном Райбетом. Ключевое доказательство гипотезы Танияма – Шимура (а тем самым – и последней теоремы Ферма) дал Эндрю Уайлз; на последнем этапе своей работы он сотрудничал с Ричардом Тейлором. – Примеч. автора.

[34] колбаса (нем.)

Назад 1 ... 25 26 27 28 29 30 Вперед

Апостолос Доксиадис читать все книги автора по порядку

Апостолос Доксиадис - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Дядюшка Петрос и проблема Гольдбаха отзывы

Отзывы читателей о книге Дядюшка Петрос и проблема Гольдбаха, автор: Апостолос Доксиадис. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.