My-library.info
Все категории

Владислав Пристинский - 100 знаменитых изобретений

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Владислав Пристинский - 100 знаменитых изобретений. Жанр: Энциклопедии издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
100 знаменитых изобретений
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
20 сентябрь 2019
Количество просмотров:
180
Текст:
Ознакомительная версия
Читать онлайн
Владислав Пристинский - 100 знаменитых изобретений

Владислав Пристинский - 100 знаменитых изобретений краткое содержание

Владислав Пристинский - 100 знаменитых изобретений - описание и краткое содержание, автор Владислав Пристинский, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Вся история человечества – это непрерывная цепь изобретений. И из этой цепи нельзя вынуть ни одного звена – иначе она вся разрушится. . В этой книге рассказывается о ста знаменитых изобретениях цивилизации – тех, без которых на планете Земля не было бы жизни. Так что цепь изобретений, о которой упоминалось, не прерывается, и не прервется никогда – она будет лишь удлиняться.

100 знаменитых изобретений читать онлайн бесплатно

100 знаменитых изобретений - читать книгу онлайн бесплатно, автор Владислав Пристинский
Конец ознакомительного отрывкаКупить книгу

Ознакомительная версия.

В 1889 г. это удалось сделать М. О. Доливо-Добровольскому. Он изобрел трехфазный трансформатор. Вначале это был трансформатор с радиальным расположением сердечников, его конструкция еще напоминала машину с выступающими полюсами, в которой устранен воздушный зазор, а обмотки ротора перенесены на стержни. Затем было предложено несколько конструкций так называемых «призматических» трансформаторов, в которых удавалось получить более компактную форму магнитопровода. Наконец в октябре 1891 г. была сделана патентная заявка на трехфазный трансформатор с параллельными стержнями, расположенными в одной плоскости. В принципе эта конструкция сохранилась до настоящего времени.

Целям электропередачи отвечали также работы, связанные с изучением схем трехфазной цепи. В 80–90-х годах XIX в. значительное место занимала осветительная нагрузка, которая часто вносила существенную асимметрию в систему. Кроме того, иногда было необходимо иметь в своем распоряжении не одно, а два напряжения: одно – для осветительной нагрузки, а другое, повышенное – для силовой.

Для того чтобы иметь возможность регулировать напряжение в отдельных фазах и располагать двумя напряжениями в системе (фазным и линейным), Доливо-Добровольский разработал в 1890 г. четырехпроводную схему трехфазной цепи, или, иначе, систему трехфазного тока с нулевым проводом. Он же указал, что вместо нейтрального или нулевого провода можно использовать землю. Доливо-Добровольский обосновал свои предложения доказательством того, что четырехпроводная трехфазная система позволяет допускать определенную асимметрию нагрузки; при этом напряжение на зажимах каждой фазы будет оставаться неизменным. Для регулирования напряжения в отдельных фазах четырехпроводной системы Доливо-Добровольский предложил использовать изобретенный им трехфазный автотрансформатор.

В настоящее время существуют много типов трансформаторов, применяющихся в различных областях техники.

Основной вид трансформаторов – трансформаторы силовые. Среди них больше всего двухобмоточных. Они устанавливаются на линиях электропередачи. Такие трансформаторы повышают напряжение тока, вырабатываемого электростанциями с 10–15 тысяч вольт до 220–750 тысяч вольт. В местах потребления электроэнергии при помощи силовых трансформаторов высокое напряжение преобразуют в низкое (220–380 вольт). Эти трансформаторы имеют КПД 0,98–0,99.

Кроме силовых существуют трансформаторы, предназначенные для измерения больших напряжений и токов: измерительные трансформаторы, трансформаторы напряжения, трансформаторы тока, а также снижения уровня помех проводной связи, преобразования напряжения синусоидальной формы в импульсное и многие другие.

Ускорители заряженных частиц

Для исследования атомного ядра его обстреливали или облучали элементарными частицами, наблюдая за последствиями. Сначала достаточно было и энергии, возникающей при естественном распаде радиоактивных элементов.

Вскоре этой энергии оказалось недостаточно, и дальнейшее развитие ядерной физики потребовало создания ускорителей заряженных частиц – «ядерной артиллерии», – позволяющих получать элементарные частицы – электроны, протоны, ионы с высокими энергиями в миллиарды электрон-вольт (МэВ) и выше. Создание таких установок позволило глубже изучить природу и взаимное превращение таких частиц. Кроме того, ускорители дают возможность получать новые радиоактивные изотопы различных элементов.

В ускорителях обеспечивается ускорение заряженных частиц до большой величины, что позволяет преодолеть внутренние силы, связывающие части атома в одно целое. Так раскрываются детали строения ядра.

Передача энергии частицам происходит благодаря взаимодействию электрического поля с зарядами частицы с использованием ее электрических и магнитных свойств. Это основной принцип действия ускорителей.

В первых ускорителях, построенных в 20–30-годы прошлого века заряженные частицы ускорялись за счет разности потенциалов электрического поля. Представителем этого типа был электростатический ускоритель Ван-де-Граафа, построенный в 1931 г. Он сочетал электростатическую машину и вакуумную трубку.

В 1932 г. сотрудники лаборатории Э. Резерфорда Дж. Кокрофт и Э. Уолтон разработали каскадный генератор, работавший по принципу умножения напряжений. Обычно он состоит из 4–10 каскадов. Схемы включения с использованием выпрямителей и конденсаторов обеспечивают увеличение напряжения в каждом каскаде на величину удвоенного амплитудного напряжения высоковольтного трансформатора, подключенного к первому каскаду. Каскадные генераторы позволяют получить ионы с энергией до 4-х МэВ и выше.

И ускоритель Ван-де-Граафа, и каскадный генератор относятся к линейным ускорителям. Они представляют собой длинную (до 100 м и выше) трубку-камеру, внутри которой поддерживается вакуум. По всей длине камеры размещено большое количество металлических трубок – электродов. Генератор высокой частоты подает на электроды переменное напряжение таким образом, что соседние электроды имеют противоположный заряд. Из электронной «пушки» в камеру выстреливается пучок электронов и под действием положительного потенциала первого электрода начинает ускоряться. В этот момент меняется фаза питающего напряжения и с ней изменяется заряд электрода. Тем самым он отталкивает от себя электроды, которые притягиваются следующим, положительным электродом. По мере движения вперед электроны разгоняются, достигая к концу камеры околосветовой скорости и приобретая энергию в несколько сотен электрон-вольт. Пролетая через специальное окно, пучок ускоренных электронов сталкивается с атомами.

Получение протонов и электронов более высоких энергий стало возможным в результате применения резонансного метода ускорения в циклотронах, появившихся в начале 30-х годов. Циклотрон является простейшим резонансным циклическим ускорителем. Его основная часть – мощный электромагнит, между полюсами которого помещена плоская цилиндрическая камера. Она состоит из двух полукруглых металлических коробок – дуантов, разделенных небольшим зазором. Дуанты служат электродами и соединены с полюсами генератора переменного напряжения. В центре камеры находится источник заряженных частиц. Вылетая из него, частица притягивается к электроду с противоположным зарядом. Внутри электрода электрическое поле отсутствует, поэтому частица летит в нем по инерции. Под влиянием магнитного поля, чьи силовые линии перпендикулярны плоскости траектории, частица описывает полуокружность и подлетает к зазору между электродами. За это время электроды поменяли заряд, и один электрод выталкивает частицу, а другой втягивает ее в себя. Переходя из дуанта в дуант, частица набирает скорость, описывая расширяющуюся спираль. При помощи специальных магнитов частицы выводятся из камеры на мишени экспериментаторов.

С приближением скорости частиц в циклотроне к световой, они становятся тяжелее и постепенно отстают от изменения знака напряжения на дуантах, не попадая в такт электрическим силам, и перестают ускоряться. Максимальная энергия, сообщаемая частицам в циклотроне, составляет 25–30 МэВ.

В 1940 г. американский физик Д. Керст создал индукционный ускоритель электронов (бетатрон), идею которого выдвинули в 1920-е годы американец Дж. Слепян и швейцарец Р. Видероэ. Это циклический ускоритель электронов нерезонансного типа. Ускорение в нем осуществляется вихревым индукционным электрическим полем, которое создается переменным магнитным полем, проходящим через сердечник магнита. Электроны в бетатроне ускоряются до энергии 100–300 МэВ. Попадая на мишень из тяжелого металла, они теряют свою энергию, и в результате возникает бетатронное гамма-излучение с высокой проникающей способностью, что используется, например, для дефектоскопии металлов.

Практически все современные мощные ускорительные установки основаны на так называемом принципе автофазировки (автоматической устойчивости фазы частицы), открытом в 1944–1945 гг. почти одновременно советским ученым В. Векслером в американским ученым Э. Макмилланом. Он позволил существенно увеличить энергию ускоренных частиц.

Принцип автофазировки лег в основу конструирования циклических резонансных ускорителей с переменной частотой – фазотронов и синхрофазотронов.

В фазотроне частицы двигаются от источника (газового разряда), находящегося в центре, по спирали к периферии вакуумной камеры. Магнитное поле в нем постоянно, а частота ускоряющегося электрического поля меняется. Изменение частоты ускоряющего поля осуществляется с помощью конденсатора переменной емкости.

В синхрофазотрон частицы (протоны) вводятся извне из ускорителя меньшей энергии. В синхрофазотроне изменяется и величина магнитного поля, и частота ускоряющего электрического поля. Частицы в нем двигаются по круговой траектории. Постоянство радиуса орбиты позволяет уменьшить ширину кольца магнита, что значительно удешевляет установку. Из всех современных ускорителей синхрофазотроны позволяют получить самые высокие энергии частиц.

Ознакомительная версия.


Владислав Пристинский читать все книги автора по порядку

Владислав Пристинский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


100 знаменитых изобретений отзывы

Отзывы читателей о книге 100 знаменитых изобретений, автор: Владислав Пристинский. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.