Одним из непосредственных источников электрического поля в магнитосфере является солнечный ветер . При обтекании магнитосферы солнечным ветром возникает эдс Е = v ´b ^ , где b ^ — нормальная компонента магнитного поля на поверхности магнитосферы, v — средняя скорость частиц солнечного ветра.
Эта эдс вызывает электрические токи, замыкающиеся обратными токами, текущими поперёк хвоста магнитосферы (см. Земля ). Последние порождаются положительными пространственными зарядами на утренней стороне хвоста магнитосферы и отрицательными — на его вечерней стороне. Величина напряженности электрического поля поперёк хвоста магнитосферы достигает 1 мв /м. Разность потенциалов поперёк полярной шапки составляет 20—100 кв.
Ещё один механизм возбуждения эдс в магнитосфере связан с коллапсом противоположно направленных силовых линий магнитного поля в хвостовой части магнитосферы; освобождающаяся при этом энергия вызывает бурное перемещение магнитосферной плазмы к Земле. При этом электроны дрейфуют вокруг Земли к утренней стороне, протоны — к вечерней. Разность потенциалов между центрами эквивалентных объемных зарядов достигает десятков киловольт. Это поле противоположно по направлению полю хвостовой части магнитосферы.
С дрейфом частиц непосредственно связано существование магнитосферного кольцевого тока вокруг Земли. В периоды магнитных бурь и полярных сияний электрические поля и токи в магнитосфере и ионосфере испытывают значительные изменения.
Магнитогидродинамические волны, генерируемые в магнитосфере, распространяются по естественным волноводным каналам вдоль силовых линии магнитного поля Земли. Попадая в ионосферу, они преобразуются в электромагнитные волны, которые частично доходят до поверхности Земли, а частично распространяются в ионосферном волноводе и затухают, На поверхности Земли эти волны регистрируются в зависимости от частоты колебаний либо как магнитные пульсации (10-2 —10 гц ), либо как очень низкочастотные волны (колебания с частотой 102 —104 гц ).
Переменное магнитное поле Земли, источники которого локализованы в ионосфере и магнитосфере, индуцирует электрическое поле в земной коре. Напряжённость электрического поля в приповерхностном слое коры колеблется в зависимости от места и электрического сопротивления пород в пределах от нескольких единиц до нескольких сотен мв /км, а во время магнитных бурь усиливается до единиц и даже десятков в /км. Взаимосвязанные переменные магнитное и электрическое поля Земли используют для электромагнитного зондирования в разведочной геофизике, а также для глубинного зондирования Земли.
Определённый вклад в Э. н. З. вносит контактная разность потенциалов между породами различной электропроводности (термоэлектрический, электрохимический, пьезоэлектрический эффекты). Особую роль при этом могут играть вулканические и сейсмические процессы.
Электрические поля в морях индуцируются переменным магнитным полем Земли, а также возникают при движении проводящей морской воды (морских волн и течений) в магнитном поле. Плотность электрических токов в морях достигает 10-6 а/м 2 . Эти токи могут быть использованы как естественные источники переменного магнитного поля для магнитовариационного зондирования на шельфе и в море.
Вопрос об электрическом заряде Земли как источнике электрического поля в межпланетном пространстве окончательно не решён. Считается, что Земля как планета электрически нейтральна. Однако эта гипотеза требует своего экспериментального подтверждения. Первые измерения показали, что напряженность электрического поля в околоземном межпланетном пространстве колеблется в пределах от десятых долей до нескольких десятков мв /м.
Лит.: Тихонов А. Н. Об определении электрических характеристик глубоких слоев земной коры, «Докл. АН СССР», 1950, т. 73, № 2; Тверской П. Н., Курс метеорологии, Л., 1962; Акасофу С. И., Чепмен С., Солнечно-земная физика, пер. с англ., ч. 2, М., 1975.
Ю. П. Сизов.
Электри'ческое смеще'ние, то же, что вектор электрической индукции (см. Индукция электрическая и магнитная). Термин имеет историческое происхождение (введён Дж. К. Максвеллом ), в современной физической литературе не применяется.
Электрическое сопротивление
Электри'ческое сопротивле'ние
1) величина, характеризующая противодействие электрической цепи (или её участка) электрическому току , измеряется в омах . Э. с. обусловлено передачей или преобразованием электрической энергии в другие виды: при необратимом преобразовании электрической энергии (преимущественно в тепловую) Э. с. называется сопротивлением активным ; Э. с., обусловленное передачей энергии электрическому или магнитному полю (и обратно), называется сопротивлением реактивным .
При постоянном токе Э с цепи (обозначается R ) в соответствии с Ома законом равно отношению приложенного к ней напряжения U к силе протекающего тока I (при отсутствии в цепи других источников тока или эдс).
При переменном токе (синусоидальном) Э. с. цепи равно , где r — активное сопротивление, а x —реактивное сопротивление цепи, определяемое наличием в цепи индуктивности и электрической емкости (см. Сопротивление индуктивное , Сопротивление ёмкостное ); величина Z называется полным электрическим сопротивлением.
Активное сопротивление элемента электрической цепи зависит как от формы элемента и его размеров, так и от материала, из которого он изготовлен. Для однородного по составу элемента в виде бруска, пластины, трубки или проволоки при постоянном его сечении S и длине l, , где r — удельное сопротивление, характеризующее материал элемента; измеряется в ом ·м, ом ·см или . По удельному сопротивлению все вещества делятся на проводники (см. Металлы , Проводники ), полупроводники (см. Полупроводники , Полупроводниковые материалы ), изоляторы (см. Диэлектрики , Электроизоляционные материалы ). При очень низких температурах Э. с. некоторых металлов и сплавов падает до нуля (см. Сверхпроводимость , Сверхпроводники ). Часто вместо удельного сопротивления, особенно при рассмотрении физической природы Э. с., вводят величину, обратную удельному Э. с.,— электропроводность .
2) Термин «Э. с.» в обиходе часто употребляют применительно к резистору или какому-либо другому элементу, присоединяемому к электрической цепи, например для ограничения или регулирования силы тока в ней (см. Шунт , Реостат , Потенциометр ).
Лит. см. при ст. Электропроводность .
Электри'чество, совокупность явлений, обусловленных существованием, движением и взаимодействием электрически заряженных тел или частиц. Взаимодействие электрических зарядов осуществляется с помощью электромагнитного поля (в случае неподвижных электрических зарядов — электростатического поля; см. Электростатика ). Движущиеся заряды (электрический ток ) наряду с электрическим возбуждают и магнитное поле, т. е. порождают электромагнитное поле, посредством которого осуществляется электромагнитное взаимодействие (учение о магнетизме , т. о., является составной частью общего учения об Э.). Электромагнитные явления описываются классической электродинамикой , в основе которой лежат Максвелла уравнения .
Законы классической теории Э. охватывают огромную совокупность электромагнитных процессов. Среди 4 типов взаимодействий (электромагнитных, гравитационных, сильных и слабых), существующих в природе, электромагнитные занимают первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных частиц противоположных знаков, взаимодействия между которыми, с одной стороны, на много порядков интенсивнее гравитационных и слабых, а с другой — являются дальнодействующими в отличие от сильных взаимодействий. Строение атомных оболочек, сцепление атомов в молекулы (химические силы) и образование конденсированного вещества определяются электромагнитным взаимодействием.