My-library.info
Все категории

Джим Брейтот - 101 ключевая идея: Физика

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Джим Брейтот - 101 ключевая идея: Физика. Жанр: Справочники издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
101 ключевая идея: Физика
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
20 сентябрь 2019
Количество просмотров:
152
Читать онлайн
Джим Брейтот - 101 ключевая идея: Физика

Джим Брейтот - 101 ключевая идея: Физика краткое содержание

Джим Брейтот - 101 ключевая идея: Физика - описание и краткое содержание, автор Джим Брейтот, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны.Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

101 ключевая идея: Физика читать онлайн бесплатно

101 ключевая идея: Физика - читать книгу онлайн бесплатно, автор Джим Брейтот

Заряд электрона е измерил в 1915 году Роберт Милликэн, разработавший метод измерения заряда отдельных масляных капель. Милликэн обнаружил, что заряд капли всегда измеряется целым числом, умноженным на 1,6 х 10-19 Кл. Отсюда ученый сделал вывод, что такой заряд является минимальным и именно он имеет отдельный электрон. Появилась возможность вычислить массу электрона, разделив заряд на удельный заряд; таким образом выяснили, что она равна 9,1 x 10-31 кг.

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

Электромагнитные волны представляют собой периодические колебания электрических и магнитных полей, распространяющиеся в среде или вакууме и происходящие в одной фазе. Для распространения таких волн не требуется наличия среды.

См. также статьи «Взаимодействия частиц», «Электронные лучи 1 и 2».

ЭЛЕКТРОННЫЕ ЛУЧИ 1— ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ

В процессе термоэлектронной эмиссии, т. е. испускании электронов с нити накала, в вакуумной трубке образуется электронный луч (пучок электронов). Нить накала (нагреваемый катод) разогревается при прохождении по ней электрического тока. Электроны в проводнике приобретают достаточную кинетическую энергию, чтобы покинуть металл и притянуться к расположенной поблизости положительно заряженной пластине, имеющей небольшое отверстие, через которое пропускается некоторое количество электронов. Затем эти электроны, проходя между «фокусирующими» электродами, фокусируются в пучок.

Кинетическая энергия и, следовательно, скорость электронов в электронном пучке зависят от потенциала анода VA, так как работа, прикладываемая к каждому электрону анодом, придает электрону кинетическую энергию. Поскольку работа равна eVA, то и кинетическая энергия электрона в пучке также равна eVA. При условии, что скорость и электрона значительно меньше скорости света, его кинетическая энергия равна 1/2mυ2, следовательно, V2mυ2 = eVA.

Из приведенной выше формулы следует, что все электроны в одном луче имеют одинаковую кинетическую энергию и скорость и поэтому равномерно отклоняются электрическим и магнитным полями. На практике электроны в луче имеют небольшой диапазон скоростей вследствие относительно небольшой начальной кинетической энергии в нагреваемом катоде.

В электронно-лучевых трубках телевизоров или мониторов применяются магнитные отклоняющие катушки, заставляющие луч двигаться по люминесцентному экрану вдоль горизонтали и затем смещаться чуть ниже. Таким образом на экране создается изображение. Различия в сигнале регулируют яркость луча.

В трубках осциллографов применяются электростатические пластины, заставляющие луч двигаться вдоль одной и той же линии сначала медленно в одном направлении, а затем быстро в другом. При изменении напряжения параллельных пластин, между которыми проходит луч, на экране появляется изображение волнистой линии.

См. также статьи «Заряд и ток», «Магнитное поле 1 и 2», «Электрическое поле 1 и 2», «Электрон».

ЭЛЕКТРОННЫЕ ЛУЧИ 2 — ТРАЕКТОРИИ В ПОЛЯХ

В однородном электрическом поле напряженностью Е пучок электронов испытывает действие постоянной силы F — еЕ в направлении, противоположном направлению электрического поля. Следовательно, часть траектории пучка электронов представляет собой параболу, схожую с траекторией брошенного тела, поскольку на него тоже действует одна постоянная сила в одном направлении (сила тяжести). Однородное электрическое поле напряженностью Е = V/d создается при разности потенциалов V между двумя пластинами, расположенными параллельно на расстоянии d друг от друга. В осциллографах отклонение электронного луча пропорционально разности потенциалов между отклоняющими пластинами.

В электрическом поле

В однородном магнитном поле с плотностью магнитного потока В электрон, движущийся со скоростью v под прямым углом к линиям магнитного поля, испытывает действие силы F = Bev. Эта сила перпендикулярна линиям магнитного поля и направлению движения электрона. При отсутствии других полей электрон движется по круговой траектории с радиусом r = mv/Be. Эта сила вызывает центростремительное ускорение, в результате которого Bev = mv2/r. Сила магнитного поля не совершает работы по отношению к электрону, потому что ее направление совпадает с направлением электронного луча. В электронно-лучевых трубках телевизоров и мониторов магнитное поле используется для отклонения электронного луча, который движется вдоль люминесцентного экрана и создается вследствие прохождения тока по ряду отклоняющих катушек.

В магнитном поле

См. также статьи «Круговое движение», «Магнитное поле 1 и 2», «Электрическое поле 1 и 2», «Электронные лучи 2».

ЭЛЕКТРОПРОВОДНОСТЬ

Электропроводность, или электрическая проводимость, металлов, собственных полупроводников и полупроводников п-типа обусловлена наличием в них свободных электронов, носителей отрицательного заряда. Электроны свободно движутся внутри вещества, поскольку их не удерживают атомы. Носителями заряда в полупроводниках р-типа являются дыры. В ионных растворах носителями заряда служат положительно и отрицательно заряженные ионы.

При разности потенциалов на концах металлического проводника или полупроводника носители зарядов, притягиваясь к противоположно заряженному концу, начинают к нему перемещаться. Так возникает электрический ток.

Для проводника с постоянной площадью поперечного сечения электропроводность определяется как отношение длины к произведению сопротивления на площадь поперечного сечения. Единицей электрической проводимости служит сименс на метр (См/м).

Удельным сопротивлением материала называется величина, обратная электропроводности (1/электропроводность). Единицей удельного сопротивления служит омметр (Ом м). Электрическая проводимость зависит от количества носителей заряда в единице объема вещества. При нагревании металлов их электропроводность уменьшается, потому что колебания атомов усиливаются и затрудняют перемещение электронов. При нагревании полупроводников их электропроводность увеличивается. Это происходит из-за того, что при повышении температуры все большее число электронов отрывается от атомов.

См. также статьи «Заряд и ток», «Сопротивление».

ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ

Энергию получают из ископаемого топлива, такого, как каменный уголь, нефть и газ, а также из других видов ресурсов, например из биомассы или урана. Каменный уголь образовался из остатков древней растительности, а нефть и газ — из умерших морских организмов, под давлением горных пород, на протяжении многих миллионов лет.

Возобновляемые источники энергии, такие, как реки, приливы и геотермальные источники, в некоторых частях мира составляют значительную часть энергетических ресурсов и могут давать энергию без процессов, требующих потребления топлива. Поэтому на них не расходуются материалы и они не загрязняют среду. Энергия солнца, волн и ветра приобретает все большее значение по мере истощения запасов нефти и газа и спада в атомной энергетике.

Общемировая энергия, получаемая из основных источников, составляет около 400 x 10 Дж в год. Вверху таблицы показано ее распределение по видам источников, а также, на сколько лет хватит этих ресурсов, если их потребление будет продолжаться на уровне 1995 года.

Внизу таблицы показано распределение источников энергии в Великобритании. Общее количество энергии, вырабатываемой в стране, составляет 3,5 % общемировой. Из таблицы видно, на сколько лет хватит этих ресурсов, если их потребление будет продолжаться на уровне 1995 года.

При истощении запасов топлива все большее внимание будет уделяться возобновляемым источникам энергии. В наши дни в Великобритании гидроэлектростанции и ветротурбины вносят значительный вклад в общее количество вырабатываемой энергии.

См. также статьи «Коэффициент полезного действия», «Энергия и мощность».

ЭНЕРГЕТИЧЕСКИЕ УРОВНИ АТОМОВ

Энергетический уровень — это возможное значение энергии в системе двух или более частиц. Энергетические уровни наблюдаются в любой замкнутой системе, где важное значение приобретает квантовая (дискретная) природа частиц. Это происходит в том случае, когда де-бройлевская волна частицы соизмерима с расстоянием между частицами.

Энергетические уровни атомов были обнаружены при изучении столкновения электронов в газовых трубках. Электроны испускались из нити накала в трубку и притягивались к аноду. При увеличении потенциала анода электроны стремились к аноду и создавали ток в трубке. При этом они должны были пройти через металлическую решетку. По мере увеличения потенциала сила тока на аноде увеличивалась, а затем падала при определенных показателях потенциала анода, называемых потенциалом возбуждения. Каждый спад силы тока происходил, когда кинетической энергии электронов, испущенных с нити, было достаточно только для того, чтобы столкнуться с атомами газа, сообщив энергию электронам атомов, переходящих на более высокий энергетический уровень. В результате столкновения электроны нити останавливались (т. е. не продолжали двигаться к аноду) и притягивались к решетке. Таким образом происходило уменьшение силы тока на аноде. Атомы газа переходили на более высокий энергетический уровень. Энергия, приобретенная атомами газа, равна кинетической энергии электронов в луче, поскольку каждый электрон луча отдает свою кинетическую энергию атомам газа. Отсюда энергетические уровни представляют собой значения энергии eV выше основного состояния, где V — любой показатель потенциала возбуждения. Энергия, необходимая для ионизации атома (удаления из атома электрона), равна eV0, где V0 — потенциал, требующийся для ионизации атома. Таким образом, самый низкий энергетический уровень, или основное состояние атома, существует при энергии eV0 ниже уровня ионизации.


Джим Брейтот читать все книги автора по порядку

Джим Брейтот - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


101 ключевая идея: Физика отзывы

Отзывы читателей о книге 101 ключевая идея: Физика, автор: Джим Брейтот. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.