My-library.info
Все категории

Лаура Спинни - Шанс есть! Наука удачи, случайности и вероятности

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Лаура Спинни - Шанс есть! Наука удачи, случайности и вероятности. Жанр: Эзотерика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Шанс есть! Наука удачи, случайности и вероятности
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
6 февраль 2019
Количество просмотров:
90
Читать онлайн
Лаура Спинни - Шанс есть! Наука удачи, случайности и вероятности

Лаура Спинни - Шанс есть! Наука удачи, случайности и вероятности краткое содержание

Лаура Спинни - Шанс есть! Наука удачи, случайности и вероятности - описание и краткое содержание, автор Лаура Спинни, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Какую роль играет случай и вероятность в жизни человека и в жизни всей Вселенной? К примеру, насколько случайны образование нашего мира, мутации генов и встреча наших будущих родителей? Существует ли свобода воли и предсказуемо ли будущее? И как приручить удачу?На эти и многие другие очень непростые вопросы ищут ответы лучшие авторы журнала New Scientist в сборнике эссе под редакцией известного популяризатора науки Майкла Брукса.

Шанс есть! Наука удачи, случайности и вероятности читать онлайн бесплатно

Шанс есть! Наука удачи, случайности и вероятности - читать книгу онлайн бесплатно, автор Лаура Спинни

По мнению некоторых биохимиков, ответом служит нечто вроде молекулярного дарвинизма. Представьте себе молекулы, которые копируются в своего рода химическом супе. Хотя такие простодушно множащиеся молекулы могут не соответствовать интуитивному определению живого, имеющемуся у большинства людей, они все же могут проходить некую разновидность дарвиновской эволюции, если им свойственна изменчивость и если они проходят отбор. Сторонники этой теории (насквозь дарвиновской) полагают, что первая такая реплицируемая молекула была достаточно проста, чтобы образоваться по чистой случайности.

Загвоздка в том, что знакомые нам крупные самовоспроизводящиеся молекулы – лишь те, которые использует живое. Крайне маловероятно, чтобы ДНК могла образоваться лишь благодаря случаю. Даже РНК, ее более простую родственницу, трудно заставить образовывать достаточно длинные цепочки, обладающие биологической действенностью. А более короткие молекулы нуклеиновых кислот склонны давать больше погрешностей при репликации. Если доля ошибок становится чересчур высокой, утечка информации происходит быстрее, чем ее приобретение путем отбора, и эволюция буксует. Молекула, склонная к ошибкам при копировании, будет не накапливать информацию, а терять ее.

А значит, для того чтобы молекулярный дарвинизм заработал, природа должна ухитриться предоставить молекулы-репликаторы достаточно простые, чтобы они могли образоваться случайно, но при этом достаточно хитро устроенные, чтобы воспроизводиться достаточно точно и при этом с огромным набором вариаций (также представляющих собой хорошие репликаторы): только на таких условиях с ними сможет иметь дело естественный отбор. Это не обязательно должны быть нуклеиновые кислоты. Но для объяснения жизни, какой мы ее знаем, они должны в конце концов породить нуклеиновые кислоты и передать им функцию самовоспроизводства.

Получается, молекулярный дарвинизм все-таки протаскивает элементы биологического детерминизма. Мало того что законы природы должны допускать существование молекул, обладающих всеми перечисленными свойствами, вдобавок эволюционный маршрут, по которому идет популяция репликаторов, должен приводить к созданию нуклеиновых кислот. А иначе жизнь, какой мы ее знаем, оставалась бы чудовищно маловероятной флуктуацией.

Значит, приходится сделать вывод, что жизнь – результат чрезвычайно маловероятного химического происшествия, случайного события, уникального для нашей Вселенной? Не обязательно. Какая-то разновидность биологического детерминизма все-таки может оказаться справедливой, даже если жизнь не вписана в известные нам законы физики, химии и эволюционной теории. Не исключено, что эти законы отвечают за жизненное «железо» (то есть за ее сырье), но необходимый для нее «софт», то есть информационная составляющая, берет начало в законах информационной теории.

Само понятие «информация», пожалуй, довольно-таки расплывчато, хотя это обычное дело для молодых наук. Два столетия назад столь же туманным понятием была энергия. Ученые интуитивно признавали ее как нечто существенное для физических процессов, но этим представлениям недоставало математической четкости. Сегодня мы рассматриваем энергию как реальную и фундаментальную количественную величину, поскольку наука в ней хорошо разобралась. А вот информация продолжает нас озадачивать – отчасти из-за того, что она предстает в разных обличьях в великом множестве областей науки. В теории относительности, например, информации запрещено распространяться быстрее света. В квантовой механике состояние системы описывается по максимуму содержащейся в ней информации. В термодинамике количество информации падает при возрастании энтропии. В биологии ген рассматривается как набор инструкций, содержащих информацию, которая необходима для выполнения определенной задачи.

То, что нам известно об информации, берет начало главным образом в царстве наук о человеческом общении. Важной вехой в развитии информационной теории стал анализ коммуникаций с помощью наполненных шумами радиоканалов, сделанный американским инженером-электротехником Клодом Шенноном во время Второй мировой войны. Однако пока никто не вывел эквивалент законов Ньютона применительно к информационной динамике. Ученые даже не могут прийти к согласию по поводу того, всегда ли информация сохраняется в физических процессах. Годами бушуют споры о том, что происходит с информацией, хранящейся в звезде, когда та схлопывается в черную дыру, которая затем испаряется. Теряется ли эта информация безвозвратно? Или она потом каким-то образом возвращается?

Одна из сфер исследования таит в себе заманчивый путь для грядущих изысканий. До сравнительно недавнего времени биологи рассматривали молекулы живого как маленькие строительные блоки, которые слипаются вместе. На самом деле строение молекул и связи между ними – предмет квантовой механики. В наши дни физики расширили понятие информации, включив в него и квантовый мир. При этом удалось совершить ряд необычайных открытий. В частности, выявить способность квантовых систем обрабатывать информацию экспоненциально быстрее по сравнению с системами классическими. Именно это свойство лежит в основе действия квантовых компьютеров.

В сущности, загадка биогенеза по природе своей – вычислительная. Требуется найти весьма особенный тип молекулярных систем на чрезвычайно раскидистом древе химических альтернатив, большинство ветвей которого представляют собой биологические тупики. Как наделить материю информацией и вывести ее на дорогу к возникновению жизни? Может статься, первые, и важнейшие, шаги здесь как раз были сделаны в странном и загадочном царстве квантовой механики? Вопрос остается открытым. Но если ответ на него окажется положительным, биологический детерминизм наконец обретет убедительное теоретическое обоснование широко распространенной гипотезе, утверждающей: мы живем в биологически дружественной Вселенной, и мы тут не одиноки.

Чудесное слияние

Может быть, возникновение жизни как таковой некогда и стало неизбежным, но этого явно нельзя сказать о жизни сложной. Легко себе представить, что самые простые формы жизни на Земле (в общем-то, не более чем крошечные мешочки с химическими веществами) могли бы всегда оставаться неизменными. Наши сложно устроенные клетки с их различными внутренними отсеками и изощренными системами поддержки, с их бесчисленными транспортными средствами и тончайшей аппаратурой могли бы никогда не появиться. Но вдруг в один прекрасный день два миллиарда лет назад произошла эта флуктуация. Ее результатом в конце концов и стали мы с вами, объясняет Ник Лейн.


Мы, сложно устроенные существа, являем собой редкостную и везучую разновидность живого. Было бы странно, если бы такие простые одноклеточные, как бактерии, не были широко распространены по всей Вселенной. Органические молекулы образуются в ходе реакций между самыми вездесущими материалами (водой, камнем, углекислым газом), и с точки зрения термодинамики такие реакции почти неизбежны. Так что раннее появление простых бактериальных клеток на Земле – отнюдь не статистический выброс: это в точности то, чего и следовало бы ожидать. Однако если мои выкладки справедливы, возникновение сложно устроенной (многоклеточной) жизни отнюдь не является неизбежным. За 4 миллиарда лет она возникла здесь лишь однажды, благодаря редкостному случайному событию.

Тут все сводится к энергии. Живые существа потребляют невообразимое количество энергии – просто для того, чтобы продолжать жить дальше. Пища, которую мы едим, превращается в топливо для всех живых клеток – АТФ (аденозинтрифосфат). Это горючее проходит непрерывный цикл переработки: за день организм каждого из нас обрабатывает от 70 до 100 кг этой штуки. Столь гигантское количество топлива производится благодаря ферментам – биологическим катализаторам, на протяжении тысячелетий тонкой настройки постепенно обучившимся извлекать из реакций всю полезную энергию, всю до последней капли.

Ферменты, дававшие питание первым живым существам, не могли обладать столь высокой эффективностью, поэтому первым клеткам наверняка требовалось гораздо больше энергии для роста и деления – вероятно, в тысячи или даже миллионы раз, чем клеткам современным. То же самое должно быть верно и для всей Вселенной.

Эти колоссальные энергетические потребности часто упускают из виду, когда речь идет о происхождении жизни. Что могло бы выступать в качестве первичного источника энергии здесь, на Земле? Старые идеи о молниях или об ультрафиолетовом излучении тут явно не годятся. Даже если оставить в стороне тот факт, что никакие живые клетки не получают энергию таким манером, следует помнить: у первых клеток не было ничего, что позволяло бы сосредоточить энергию в одном месте. Первые живые существа не могли отправиться на поиски энергии, а значит, они должны были возникнуть там, где энергии много. К примеру, там, где много солнечного света? Да, сегодня основная часть живых существ получает энергию от Солнца, прямо или косвенно. Но фотосинтез – процесс сложный, и он едва ли питал собой первых живых существ.


Лаура Спинни читать все книги автора по порядку

Лаура Спинни - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Шанс есть! Наука удачи, случайности и вероятности отзывы

Отзывы читателей о книге Шанс есть! Наука удачи, случайности и вероятности, автор: Лаура Спинни. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.