Наука – эконометрические модели
В Антверпенском университете я специализировался в области количественной экономики – области, основанной на математических расчетах. Неудивительно, что этот предмет не был особенно популярен. Приверженцы математики предпочитали заниматься техническими или точными науками, но не экономикой. Поэтому встречалось довольно мало студентов – с одной стороны, не убоявшихся математики, с другой стороны, не желавших становиться инженерами, – которые занимались количественной экономикой. Я не преувеличиваю. Из тысячи студентов моего курса степень в области количественной экономики получили лишь шесть выпускников. Но зато это нас сплотило. Для сравнения представьте, насколько сильными могут быть связи между двумя сотнями психологов, собирающихся в одном зале.
Правда, нам не сильно повезло с руководителем, специалистом в области эконометрики – дисциплины, которая занимается исследованием количественных и статистических методов в применении к экономическим принципам. Эконометрические методы – чуть ли не самое важное направление, которым только могут заниматься специалисты в области количественной экономики. Мой наставник предпенсионного возраста, будучи отличным профессионалом, так и не научился общаться с аудиторией. Он стоял в аудитории, рассчитанной на пятьсот слушателей, и бубнил что-то маленькой кучке студентов (мы так и не нашли того идиота, который отвечал в университете за распределение аудиторий). Сначала мы, все шестеро, заняли первый ряд, напротив кафедры, но преподаватель ни разу даже не взглянул на нас. В какой-то момент мы решили распределиться по всей огромной аудитории – он не обратил на это никакого внимания и продолжал свои девяностоминутные бормотания.
Поэтому нет ничего странного, что мой энтузиазм по отношению к эконометрике был довольно низок, равно как и представление о ее практическом применении. Ситуация коренным образом изменилась в мой последний университетский год, когда у нас появилось несколько очень интересных преподавателей. Один из них отвечал за экономическую политику бельгийского правительства и смог объяснить нам, каким образом эконометрика может использоваться для прогнозирования спроса и предложения в экономике (что позволяло правительству заблаговременно совершать важные шаги). Другая преподавательница показала нам, каким образом эконометрика и другие количественные методы могут использоваться в маркетинге и продажах. И если бы не она (и не моя легкая влюбленность в нее), я вряд ли смог бы написать эту книгу!
Так как же работает эконометрическое моделирование? Этот метод позволяет рассчитать влияние на систему целого набора параметров (например, объемов общего потребления продукта или спроса на него). В области маркетинга специалисты по эконометрике пытались оценить спрос на тот или иной бренд.
Что может повлиять на величину спроса? Спрос на продукт зависит от цены, качества, дистрибуции, рекламы и множества других факторов. И все это может быть выражено в виде математической функции, например функции линейной регрессии. (Тут нам не обойтись без некоторых специфических подробностей, но не беспокойтесь, я постараюсь сделать это быстро и безболезненно – вы даже не заметите.) Основное уравнение линейной регрессии выглядит так:
Продажи = β1 × Предложение + β2 × Дистрибуция + β3 × Цена + β4 × Маркетинг + β5,
где β (бета) в каждом случае означает некий неизвестный фактор, определяющий, каким образом та или иная переменная будет влиять на спрос вашей продукции, то есть какое значение имеет дистрибуция. Если тот или иной параметр имеет большое влияние, то он имеет и большую бету. Если дистрибуция не имеет особого значения, то ее бета будет минимальной.
Вы знаете величину показателей, связанных с предложением, дистрибуцией, ценой и маркетинговыми усилиями. Как только вы определите величину беты, то сможете понять, в какой степени эти факторы влияют на объем продаж. Таким образом, основная задача состоит в нахождении значения беты. Каким образом эконометрическое моделирование может помочь нам в этом процессе?
Давайте рассмотрим практический пример, и вы сами увидите причину, по которой вам имеет смысл заниматься такой работой. Она позволяет вам создать диаграмму причинно-следственных связей (в том числе с включением фактора неизвестности) в виде самых простых графиков. А все, что способно упростить картину, – это благо.
Предположим, мы хотим разобраться, как влияют маркетинговые усилия на продажи одновременно двух брендов – при прочих равных условиях (уровень предложения, дистрибуции и цены). В данном случае мы пытаемся вычислить, какой эффект будет иметь та или иная величина маркетинговых расходов на продажи с течением времени. Приведенный ниже график показывает, каким образом могли бы выглядеть эти данные для обоих брендов. На вертикальной оси отмечены продажи брендов. На горизонтальной оси приведены маркетинговые затраты. Каждая точка представляет собой «наблюдение», то есть в нашем случае период с определенной величиной расходов и связанным с ней уровнем продаж.
Мы видим две различные картины. Для бренда А почти не заметна связь между маркетинговыми усилиями и продажами. Каждый уровень маркетинговых расходов приводил к совершенно разным значениям показателя продаж. С точки зрения математики мы возвращаемся обратно к формуле (Продажи = β4 × маркетинг) и считаем бету незначительной в статистическом смысле слова. Фактически здесь не наблюдается никакой существенной корреляции. Совсем иначе обстоят дела с брендом B, где связь заметна сразу.
Эконометрическое моделирование помогло нам найти взаимосвязь маркетинговой политики и продаж. Иными словами, мы смогли нарисовать кривую, оптимальную с точки зрения всей совокупности точек. Визуально заметно, что к верхней линии ближе куда больше точек, чем к нижней.
Пока все идет неплохо. Однако мы не хотим всякий раз рисовать эти линии от руки, а кроме того, не каждая ситуация в реальной жизни будет столь же простой. Нам необходимо научить компьютер рисовать эти линии и находить тенденции даже там, где мы сами их не видим.
Вот каким образом мы добились этого. Мы попросили компьютер рассчитать дистанцию между каждой точкой и линией. Затем мы попросили его сложить величины всех этих дистанций. Показатель суммы дистанций отражает степень соответствия. Чем выше сумма, тем хуже соответствие. Именно таким образом компьютер может рассчитать, какая линия лучше всего соответствует всем точкам, образующим облако.