имеет(джон,книга(грозовой_перевал, бронте)).
Внутри факта имеет находится структура с именем книга, имеющая две компоненты: название и автор. Поскольку структура книга появляется внутри факта как один из его аргументов, она действует как объект, принимая участие в отношении. При желании можно было бы создать еще одну структуру – для идентификации автора, поскольку существовали три писательницы с фамилией Бронте:
имеет(джон,книга(грозовой_перевал, автор(эмили, бронте))).
Структуры с переменными в качестве компонент могут появляться в вопросах. Например, можно было бы спросить, есть ли у Джона какая-либо книга сестер Бронте:
?- имеет(джон,книга(Х,автор(Y, бронте))).
Если будет доказано, что это утверждение согласовано с базой данных, то значением X будет название книги, а значением Y – имя автора. В тех случаях, когда переменные в дальнейшем не используются, можно употребить анонимную переменную:
?- имеет(джон, книга(_, автор(_,бронте))).
Напомним, что анонимные переменные не «сцепляются» друг с другом.
Структуру книга можно было бы еще улучшить, добавив аргумент, указывающий экземпляр книги. Например, третий аргумент, на место которого следует ставить целое число, дал бы нам возможность однозначно идентифицировать книгу:
имеет(джон, книга (улисc, автор(джеймс,джойс), 3129)).
что соответствует следующей фразе на естественном языке: Джон имеет 3129-й экземпляр книги Джеймса Джойса «Улисс». Если у читателя сложилось впечатление, что синтаксис структур совпадает с синтаксисом фактов, то нам остается только подтвердить его правоту. Предикат (используемый в фактах и правилах) является на самом деле функтором некоторой структуры. Аргументы факта или правила – это компоненты структуры. Представление самих Пролог-программ в виде структур обладает многими достоинствами. Сейчас преждевременно обсуждать эти достоинства, однако читателю все же следует помнить, что все части Пролога, даже сами Пролог-программы, состоят из констант, переменных и структур.
Имена констант и переменных образованы цепочками литер. Хотя для каждого вида имени (атом, целое число, переменная) имеются специальные правила, указывающие, из каких литер оно может составляться, полезно знать, что представляет собой весь набор литер, распознаваемых Прологом. Это связано с тем, что литера сама может рассматриваться как самостоятельный элемент данных. Поскольку мы уже знакомы с целыми числами, можно теперь описать, как литеры представляются небольшими целыми числами. Над литерами чаще всего выполняются операции «ввод» и «вывод». Эти операции будут обсуждаться в гл. 5.
В Прологе имеются два типа литер: печатаемые литеры и непечатаемые литеры. Печатаемые литеры обладают визуальным образом, появляющимся на терминале при выводе. Непечатаемые литеры такого образа не имеют, но при выводе они вызывают выполнение некоторых действий. Этими действиями могут быть пропуск пустого места («печать» пробела), переход на новую строку, подача звукового сигнала. Ниже приведены все печатаемые литеры, которые можно использовать в Пролог-программах.
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abedefghijklmnopqrstuvwxyz
0123456789
!"#$%&'()=–~^|{}[] _`@ +;*:‹›,.?/
Читатель должен заметить, что данный набор более полон, чем приводившийся в начале главы. Некоторые из этих литер имеют специальное значение. Например, круглые скобки используются для выделения компонент структур. Однако, как мы увидим в последующих главах, любая литера может рассматриваться в Пролог-программе как и информационный элемент данных. Литеры могут печататься, вводиться с клавиатуры, сравниваться и принимать участие в арифметических операциях.
Литеры на самом деле интерпретируются как небольшие целые числа – из диапазона от 0 до 127. Каждой литере поставлено в соответствие некоторое целое число, называемое ее ASCII-кодом. Аббревиатура ASCII расшифровывается следующим образом: American Standard Code for Information Interchange (Американский стандартный код для обмена информацией)[6]. Этот код широко используется на вычислительных машинах и в языках программирования во всем мире. Таблицу кодов ASCII можно найти почти в любом руководстве по работе на ЭВМ. Коды букв упорядочены в алфавитном порядке, так что выяснение порядка следования литер в алфавите сводится к сравнению их кодов с помощью операторов отношений, описываемых ниже в данной главе. Коды всех печатаемых литер больше 32.
Хотя польза кода ASCII в данный момент может быть для читателя и не очевидной, мы вновь вернемся к этому вопросу в разд. 3.2. и 3.5.
Иногда удобно записывать некоторые функторы как операторы. Это особая форма синтаксиса, облегчающая чтение соответствующих структур. Например, арифметические операции обычно записываются как операторы. В арифметическом выражении x+y*z знаки сложения и умножения являются операторами. Если же данное арифметическое выражение записать в обычном для структур виде, то оно будет выглядеть следующим образом: +(x,*(y,z)). Однако в некоторых случаях операторная форма записи удобнее потому, что мы со школьных лет привыкли использовать ее в арифметических выражениях. Кроме того, структурная форма требует заключения аргументов функтора в круглые скобки, что иногда обременительно.
Важно отметить, что операторы не вызывают выполнения каких-либо арифметических операций. Так, в Прологе 3+4 и 7 означают разные объекты. Терм 3+4 - другой способ записи терма +(3,4), который является структурой. Позже будет описан способ интерпретации структур как арифметических выражений и вычисления их в соответствии с правилами арифметики.
Для начала необходимо знать, как читать арифметические выражения, содержащие операторы. Это требует знания трех свойств каждого оператора: его позиции, его приоритета и его ассоциативности. В данном разделе будут описаны правила использования операторов Пролога с учетом этих свойств, но пока без излишних подробностей. В Пролог-программе можно определить много различных видов операторов, но мы будем иметь дело только с хорошо знакомыми атомами +, -, * и /.
Синтаксис терма, содержащего операторы, частично зависит от их позиций. Операторы, подобные знакам сложения (+), вычитания (-), умножения (*) и деления (/), записываются между своими аргументами и называются поэтому инфиксными операторами. Можно также помещать операторы перед их аргументами. Так, в выражении -х+у минус перед х обозначает арифметическую операцию изменения знака. Операторы, записываемые перед своими аргументами, называются префиксными операторами. Наконец, некоторые операторы могут помещаться после своего аргумента. Например, оператор вычисления факториала, употребляемый математиками, помещается после числа, для которого необходимо вычислить факториал. В математических обозначениях факториал х записывается как x!t где восклицательный знак обозначает операцию вычисления факториала. Операторы, записанные после своих аргументов, называются постфиксными операторами. Таким образом, позиция оператора указывает его место по отношению к своим аргументам. Все операторы, рассматриваемые в следующем разделе, являются инфиксными.
Теперь рассмотрим приоритет операторов. Когда нам необходимо проинтерпретировать терм х+y*z как арифметическое выражение, мы знаем, что для того, чтобы получить правильное значение, нужно сначала перемножить у и z, а затем прибавить х. Этими знаниями мы обязаны школе, где нас научили, что умножения и деления выполняются до сложений и вычитаний; исключениями являются случаи, когда порядок операций задается скобками. С другой стороны, структурная форма +(x,*(y,z)) явно показывает порядок выполнения операций, поскольку структура с функтором * является аргументом структуры с функтором +. Для того чтобы ЭВМ правильно произвела соответствующие вычисления, необходимо сначала выполнить умножение – тогда в структуре с + будут известны значения аргументов. Таким образом, для использования операторов необходимы правила, указывающие порядок выполнения операций. Именно этой цели служит приоритет.
Приоритет оператора определяет, какая операция выполняется первой. В Прологе каждый оператор связан со своим классом приоритета. Класс приоритета представляет собой целое число, величина которого зависит от конкретной версии Пролога. Однако в любой версии оператор с большим приоритетом имеет класс приоритета, более близкий к 1. Если классы приоритетов принимают значения из диапазона от 1 до 255, то оператор с первым классом приоритета выполняется первым, до выполнения операторов, принадлежащих (например) к классу 129. В Прологе операторы умножения и деления принадлежат к более высокому классу приоритетов, чем сложение и вычитание, поэтому терм а-b/с эквивалентен терму -(a,/(b,c)). Точное соответствие между операторами и классами приоритетов в данный момент не существенно, однако желательно запомнить относительный порядок выполнения операций.