Ознакомительная версия.
.PROBE
.END
Рис. 9.8. Модель двухполупериодного выпрямителя для анализа в PSpice
Проведите анализ и получите в Probe графики для двух входных напряжений v(1), v(3) и для выходного напряжения v(2). Здесь мы видим двухполупериодное выпрямление, когда на протяжении всего периода один из диодов проводит ток. Эти графики показаны на рис. 9.9. Удалите графики напряжений и получите затем график выходного тока I(R). Убедитесь, что ток I(R) достигает на каждом полупериоде максимума (I(R)max=11.28 мА). Согласуется ли это с вашим расчетным значением? График тока нагрузки приведен на рис. 9.10.
Рис. 9.9. Входное и выходное напряжения при двухполупериодном выпрямлении
Рис. 9.10. Ток нагрузки при двухполупериодном выпрямлении
Двухполупериодные выпрямители с фильтрами
Подключите конденсатор емкостью 25 мкФ параллельно сопротивлению нагрузки R, добавив команду
С 2 0
во входной файл предыдущего примера.
После проведения анализа получите график выходного напряжения v(2) вместе с входными напряжениями v(1) и v(3). Получите графики, отражающие влияние емкости конденсатора на напряжение пульсаций. Воспользовавшись режимом курсора, убедитесь, что v(2)max=11,28 В и v(2)min=8,79 В, что создает размах пульсаций напряжения Vr=2,52 В. Эти графики показаны на рис. 9.11.
Рис. 9.11. Входное и выходное напряжения при двухполупериодном выпрямлении с емкостной фильтрацией
Простейший диодный ограничитель
Ограничитель используется, чтобы передать на выход только часть входного напряжения произвольной формы. Когда диод включается, происходит отсечка: на выход независимо от входного сигнала подается сумма напряжений на источнике и прямосмещенном диоде. На рис. 9.12 показана одна из таких схем. Входной файл для нее:
Diode Clipping Circuit
vi 1 0 sin(0 12V 60Hz)
DA 2 3 D1
R 1 2 1k
VR 3 0 8V
.MODEL D1 D
.TRAN 0.1ms 25ms
.PROBE
.END
Рис. 9.12. Простейшая схема диодного ограничителя
Проведите анализ и получите график входного напряжения v(1) и выходного напряжения v(2). Можете ли вы предсказать, каким будет уровень ограничения? Почему он не равен в точности 8 В? Эти графики показаны на рис. 9.13.
Рис. 9.13. Входное и выходное напряжения в схеме на рис. 9.12
Двусторонний ограничитель
Чтобы преобразовать синусоидальное напряжение в прямоугольное, используется двусторонний ограничитель. Для этой цели может служить простое последовательное соединение двух противовключенных стабилитронов (рис. 9.14). Выбраны стабилитроны, с напряжением зенеровского пробоя 2,4 В, используется встроенная модель диода, которая может быть легко преобразована в модель стабилитрона введением параметра BV для напряжения пробоя, как показано в следующем входном файле:
Double-Ended Clipper Using Avalanche Diodes
vi 1 0 sin(0 24V 60Hz)
DA 3 2 D1
DB 3 0 D1
R 1 2 1k
.MODEL D1 D(BV=2,4V)
.TRAN 0.1ms 2 5ms
.PROBE
.END
Рис. 9.14. Двусторонний ограничитель на базе встречновключенных стабилитронов
Проведите анализ, получите графики входного v(1) и выходного v(2) напряжений. Обратите внимание, что выходное напряжение отсекается с двух сторон из-за действия противовключенных стабилитронов. Почему отсечка происходит таким образом, что выходное напряжение изменяется между значениями ±2,4 В? Проверьте, что выходное напряжение достигает максимума в 3,628 В. Оставьте на графике только кривую v(2), чтобы сделать прямоугольную форму более очевидной. Эти графики приведены на рис. 9.15.
Рис. 9.15. Входное и выходное напряжение в схеме на рис. 9.14
Часто для этой схемы показывают передаточную характеристику (характеристику выход-вход). Вы можете увидеть эту кривую, выведя по оси X напряжение v(1) и получив затем график v(2). Этот график покажет выходное напряжение при полном колебании входного напряжения. Обратите внимание, что эта кривая немного выходит за диапазон графика. Это объясняется тем, что анализ переходных процессов проводится при синусоидальном входном напряжении. Этого можно избежать, используя вариацию по постоянному току (dc sweep). Измените входной файл следующим образом:
Double-Ended Clipper Using Avalanche Diodes
VI 1 0 24V
DA 3 2 D1
DB 3 0 D1
R 1 2 1k
.MODEL D1 D(BV=2.4V)
.DC VI -24 24 0.1
.PROBE
.END
Проведите анализ и получите более качественную характеристику передачи. Входное напряжение VI выводится по оси X. Получите график V(2) на оси Y. Характеристика показана на рис. 9.16.
Рис. 9.16. Передаточная характеристика схемы на рис. 9.14
Выбор сопротивления нагрузочного резистора для максимальной передаваемой мощности
Мы рассмотрели теорему о максимальной мощности для схем постоянного и переменного тока. В обоих случаях устанавливалась нагрузка и затем проводился анализ. Если мы изменяли значение нагрузки во входном файле, то анализ приходилось выполнять снова. Существует, однако, способ изменения нагрузки в рамках одного анализа. Опишем его.
На схеме (рис. 9.17) показан источник постоянного напряжения в 12 В с внутренним сопротивлением Ri=5 Ом, подключенный к переменному нагрузочному резистору RL. Чтобы реализовать переменный резистор RL, необходимо использовать команду .MODEL для резистора. Она выглядит следующим образом:
.MODEL RL RES
Рис. 9.17. Схема для исследования максимальной мощности при изменении сопротивления нагрузки
где RL — выбранное имя модели и RES — тип вызываемой модели. Использование модели позволяет нам включить RL в качестве варьируемого параметра в команду .DC sweep, показав диапазон значений для сопротивления. Команда при этом выглядит следующим образом:
.DC RES RL(R) 0.1 10 0.1
Здесь RES — имя варьируемой переменной, запись RL(R) использует выбранное нами имя модели, a (R) имя прибора, которым в данном случае является резистор. Весь входной файл:
Maximum Power with Variable Load Resistor
V 1 0 12V
RI 1 2 5
RLOAD 2 0 RL 1
.MODEL RL RES
.DC RES RL (R) 0.1 10 0.1
.PROBE
.END
Обратите внимание на команду RLOAD. Последний заданный в ней параметр — масштабный множитель 1. Это необходимое значение, без которого анализ не будет работать. Целью введения этого параметра в команду является стремление учесть различные множители, например, когда имеется несколько резисторов, использующих одну модель.
Выполните анализ и получите график
I(RI)·V(2),
представляющий собой мощность, выделяемую в резисторе нагрузки. Убедитесь, что максимум приходится на значение R=5 Ом, подставив RLOAD=5 Ом. Используйте курсор, чтобы показать, что Рmax=7,2 Вт. Этот график показан на рис. 9.18.
Рис. 9.18. Зависимость мощности от сопротивления
Встроенная модель биполярного транзистора
В начальных главах мы не использовали при анализе транзисторных схем встроенную модель для плоскостного биполярного транзистора (BJT). Хотя одно из основных преимуществ PSpice заключается в широком диапазоне и многосторонности встроенных моделей, в то же время эти сложные модели могут напугать начинающего пользователя. Например, встроенная модель Q для биполярного транзистора содержит 40 параметров, которые могут быть определены пользователем. Если вы посмотрите раздел «Q — биполярный транзистор» в приложении D, то увидите, насколько всесторонними являются эти параметры.
Многие из них вам, вероятно, совершенно не знакомы и выходят за рамки нашего обсуждения.
Выходные характеристики схемы с общим эмиттером
Чтобы представить модель биполярного транзистора, мы используем схему смещения усилителя с ОЭ, представленную на рис. 9.19. Такую схему вы могли бы использовать, если бы вам пришлось исследовать выходные характеристики биполярного транзистора в лаборатории. Вы получили бы подобную характеристику, поддерживая постоянным входной ток IВ при изменении напряжения VCE. Большинство студентов знакомо с этим экспериментом. Рассмотрим теперь этот эксперимент с точки зрения PSpice. Мы вызываем транзистор Q1 и используем имя модели BJT. При использовании этих обозначений необходимая команда примет вид:
Ознакомительная версия.