– В наших условиях отследить это на 100 % невозможно – но зачастую оно само так выходит. У нас есть люди, которые понимают в обратной разработке, и есть люди, которые пишут код. Вторые обращаются к первым – как это реализовано? Получают ответ. Пишут свой код.
Что дальше?
Порой в комфорте современных операционных систем мы забываем, что когда-то компьютеры были terra incognita, сулящей небывалые возможности, – и именно этим привлекали своих первых пользователей. Но многих людей продолжает манить эта неизвестность, и они находят себе новые неизведанные земли – и занимаются их освоением. Это желание двигало первыми разработчиками Linux Kernel в начале 1990-х годов. Вероятно, именно оно движет многими разработчиками ReactOS сейчас. А еще через десять лет, когда ReactOS станет таким же мэйнстримом, каким сейчас является Linux, оно будет двигать участниками какого-то другого проекта.
Редакция благодарит кафе «Кофе-бин» за содействие в организации съемки.
МЫСЛИ: О видимом и невидимом
Автор: Ваннах Михаил
В начале шестидесятых годов прошлого века, когда в Москве существовал магазин «Изотопы», по всему Советскому Союзу было принято строить типовые кинотеатры с высокотехнологическими названиями типа «Уран». И не менее типовым элементом их интерьера была конструкция из неоновых трубок, долженствующая изображать модель атома. Ядро и орбиты электронов вокруг него. Часто – с точечками самих электронов.
Наука Нового времени началась с наблюдений, выполненных при помощи оптических приборов. Если известные с античности, бытовавшие в арабском мире угломерные приборы – квадранты, октанты, астролябии – дали точные таблицы, позволившие установить законы Кеплера и перейти к математическим началам натуральной философии, то уже телескоп Галилея развалил на отдельные звезды серебро Млечного пути, обнаружил пятна на Солнце, фазы Венеры и спутники Юпитера. И все это было наглядным.
Если для понимания того, что расхождение во втором-третьем знаке таблиц движения планет заставляет нас откинуть воображаемые, но вполне наглядные небесные сферы и перейти к эллипсам, требовался огромный труд по изучению математики, то узнать, что на Луне есть горы, а Юпитер подобен Земле, ибо имеет спутники, можно было без труда. Всего лишь взглянув в телескоп.
И убедиться в существовании микроорганизмов можно было, всего лишь посмотрев на каплю воды в микроскоп. Доходило до анекдотов. Так, итальянская инквизиция на рубеже пятнадцатого-шестнадцатого веков одним из своих достижений считала конфискацию у некроманта необычайно жирного и отвратительного черта, заключенного в волшебный кристалл. Кристаллом выступала чечевичная линза, а роль черта играла обычная блоха. Однако добрые горожане, восхищавшиеся творениями да Винчи и Микеланджело, с удовольствием верили в некромантского черта, заточенного в хрустале. Они же верили своим глазам!
Но наука уверенно шла двумя дорогами. Наглядные наблюдения, доступные глазу любого, и математические описания, подчас требующие для понимания колоссального труда. Геометр Евклид говорил когда-то египетскому царю Птолемею Лагиду, что в математике нет царских путей. В науке царские тропинки существовали – в музейных коллекциях изобилуют богато украшенные рефракторы и рефлекторы, через которые наблюдали ход небесных светил и венценосные особы, и мелкие графья.
Были и другие наглядные физические приборы, зачастую очень изящные. Например, фигуры Хладни, образующиеся под воздействием стоячих волн на стальных или стеклянных пластинках, покрытых мелким сухим песком. Удивительно простой и грациозный опыт.
Конструировались также приборы, наглядно демонстрировавшие тайны Мироздания. Вот, скажем, любимый земскими просветителями теллурий – устройство из керосиновой лампы, вокруг которой обращались шар, изображавший Землю, а его, в свою очередь, обегал шарик, моделирующий Луну. Такое устройство показывало фазы Луны и солнечные и лунные затмения.
И атомная физика знала весьма наглядные общедоступные приборы. Сцинтилляскоп, например, – коробочка с отверстием, закрытым линзой. Такая коробочка, при условии малости отверстия, – самая легкодоступная модель абсолютно черного тела. А в ней волшебное свечение – сернистый цинк под действием мельчайшей крупицы радиоактивного вещества. Ускользающее черенковское свечение вокруг погруженного в бассейн демонстрационного реактора.
Казалось бы, выложенные газосветными трубками картинки атомов – продолжение, как и планетарий, той же достойной традиции. Только сделанной совсем уж общедоступной, донесенной даже до тех строителей нового общества, что выбрались в кино поглазеть на подвиги чекистов и угоститься в буфете бутылочным (а значит, неразбавленным!) жигулевским по двадцать пять копеечек за пол-литра, без стоимости посуды.
Но между планетарием и наглядным изображением планетарной модели атома есть принципиальная разница. Планетарий отображает то, что объективно существует, может быть увидено. Хоть мы и не видим блистательный мир звезд из-за солнечного цвета, городского вечернего освещения, атмосферных дымов, облаков или не той широты или долготы.
Наглядное изображение планетарной модели атома, распространенное до сих пор, рисует то, что на самом деле не существует. Реальность «странного», по выражению выдающегося популяризатора науки Даниила Данина, квантового мира внутриатомных процессов, имеет с этими картинками не больше общего, чем видимый итальянскими горожанами Возрождения чёрт с объективно существующей при отсутствии санобработки Pulex irritans, обычной блохе.
Но квантовая механика – это не мир средневековой демонологии, это вполне объективная научная и технологическая основа современной цивилизации. Да, основа пока лишь электроники и информационных технологий. Но вскоре – и всего человечества.
Недавний рост цен на хлеб объясняется увеличением спроса на зерно для производства топливного этанола. Запасы углеводородов ограничены. И задача рентабельного использования излучения термоядерного реактора, миллиарды лет устойчиво функционирующего в 150 миллионах километров от нас, наверняка потребует инженерного использования процессов квантовой механики. А для этого необходимо увеличить число людей, имеющих как можно более точное представление о них. Если не максимально близкое к реальности, то хотя бы асимптотически приближающееся к математическим, формализованным описаниям реальности. И к тому же людей, умеющих манипулировать этими представлениями в практических целях, как конструктор-механик манипулирует образами поверхностей и линий, накладывая на них ограничения, обусловленные свойствами материалов, законами кинематики и динамики.
Шотландский философ Давид Юм писал: "Единственная непосредственная польза всех наук состоит в том, что они обучают нас управлять будущими явлениями и регулировать их с помощью причин. Обладающие сходством объекты всегда соединяются со сходными же – это мы знаем из опыта; сообразуясь с последним, мы можем поэтому определить причину как объект, за которым следует другой объект, причем все объекты, похожие на первый, сопровождаются объектами, похожими на второй" [Юм Д., Сочинения в двух томах. Т.2. М., 1965, с.78.].
Управлять будущими явлениями. Как этого можно добиться? Опытом?
Герман Гельмгольц
Гельмгольц Герман Людвиг Фердинанд (Helmholtz, 1821—1894), выдающийся физик, математик, физиолог и психолог. Родился в Потсдаме, в 1843 году окончил Военно-медицинский институт в Берлине. Военный врач, профессор физиологии университетов в Кенигсберге, Бонне, Гейдельберге. С 1871 года профессор физики в Берлинском университете, с 1888-го директор физико-технического института в Берлине. Именно Гельмгольц в работе "О сохранении силы" (1847) дал математическое обоснование закона сохранения энергии и показал его применимость к процессам в живых организмах. Доказал применимость принципа наименьшего действия к тепловым, электромагнитным и оптическим явлениям, вскрыл связь этого принципа со Вторым началом термодинамики. Ввел понятие свободной энергии, был пионером теории вихревого движения жидкости и теории разрывных движений.
Гельмгольц обнаружил явление колебательного разряда лейденской банки – факт, сыгравший существенную роль в развитии теории электромагнетизма. По его предложению Генрих Герц провел опыты с электромагнитными волнами. Именно Гельмгольц создал офтальмоскоп и разработал теорию аккомодации. И теория цветового зрения – его детище!
Не верь глазам своим
А вот Герман Гельмгольц был весьма скептичен. И в отношении принципа причинности, и в отношении опыта. В "Физиологической оптике" он писал: "Принцип причинности носит характер чисто логического закона даже в том, что выводимые из него следствия относятся в действительности не к самому опыту, а к пониманию опыта и, следовательно, не могут быть опровергнуты никаким возможным опытом".