Впрочем, в стандартных наборах есть определенные минусы - например, мне не нужно, чтобы проектор при включении выбирал какой-то определенный вход, поскольку он всегда подключен по HDMI. Однако отменить это действие невозможно. Проблема решается только созданием собственного Activity - там уже можно задавать что угодно.
После того как вся аппаратура и действия будут настроены, дается команда закачать новые данные в пульт. Теперь можно начинать пользоваться пультом. Activities и Devices вызываются различными кнопками. На дисплее помещается шесть ссылок. Если устройств или действий больше шести, они переносятся на следующие страницы, которые можно листать с помощью специальных кнопок, расположенных под дисплеем.
Очень удобно реализовано включение дисплея - не по кнопке, а с помощью датчика движения: как только пульт берешь в руки или чуть качнешь - дисплей включается.
Модель не на батареях, а на аккумуляторе, так что заряжается в специальном горизонтальном крэдле. Инфракрасных модулей два: в верхнем торце, как обычно, и в нижнем - для обучения от других пультов. Угол действия довольно широкий. У меня проектор подвешен довольно далеко от стойки с аппаратурой, но по кнопке "My DVD" все устройства вместе с проектором включаются без проблем.
В общем, я доволен этой моделью. При цене, вполне сравнимой с ценой Philips Prestigo SRU9600, этот пульт делает на порядок больше и решает практически все проблемы управления домашней аппаратурой.
Да, в программе настройки есть некоторые спорные моменты, однако она не показалась мне такой уж сложной и запутанной, как утверждали некоторые обозреватели. Ну и кроме того, Harmony 785 умеет управлять любыми домашними устройствами с инфракрасными датчиками - например, включать/выключать свет, выводить холодильник в Интернет для заказа продуктов, давать команду кровати подогревать матрас перед сном и т. д. Но для меня главное, что он отлично справляется даже с такой пошлой вещью, как включение и подготовка к работе нескольких мультимедийных устройств. Все-таки просмотр фильма гораздо важнее, чем заказ холодильником продуктов. Холодильнику такое важное дело вообще доверять нельзя. Назаказывает масла и морковки, когда в доме ни капли спиртного! Ну и что с ним после этого делать, а?!!
ТЕХНОЛОГИИ: Важнейшее из искусств:Вчерашние проблемы сегодняшнего телевидения
Автор: Юрий Ревич
Преобразуя цифровое изображение в экранную картинку, бедняга компьютер пашет в поте лица, даже если речь идет о чистом растровом изображении (таком, например, какое хранится в файлах формата BMP или несжатого TIFF). В процессе вывода на экран изображение приходится масштабировать (на мониторах, кроме очень уж специальных, даже 3-мегапиксельная картинка не умещается в масштабе 100%), прогонять через модуль управления цветом (если этого не делать, то одни и те же цвета для разных изображений и на различных дисплеях демонстрировались бы совершенно по-разному), подвергать гамма-коррекции [В процессе гамма-коррекции шкала оттенков в темных частях растягивается, а в светлых - сужается, то есть яркость точки на экране зависит от числового значения пиксела нелинейно. Исторически такая поправка возникла для компенсации нелинейности кинескопа (который лучше отображал оттенки в светлой части спектра). В современных дисплеях зависимость более сложная (и компенсация нелинейности производится аппаратно), но гамма-коррекция для изображений применяется по-прежнему: во-первых, для совместимости, а во-вторых, потому, что темные оттенки менее различимы глазом и нескорректированное изображение теряет детали в тенях.] и т. д.
Но и само существование цифрового изображения в форме "чистого растра" - скорее исключение. Как правило, на носителях его хранят в сжатом виде - для фото это в подавляющем большинстве формат JPEG, иногда всякие форматы "без потерь" - GIF либо PNG, может быть и сжатый TIFF. В этом случае изображение еще и предварительно приходится распаковывать, переводя его в "чистый растр", а уже потом выполняя вышеописанные манипуляции.
Для движущихся изображений все еще сложнее, и способов их представления много больше. И компьютер (в том числе и телеприемник - все современные телевизоры являются специализированными компьютерами) должен уметь декодировать на лету поступающий сигнал, в каком бы виде он ни был представлен, и превратить его в последовательность растровых картинок для вывода на монитор. Итого, количество инстанций, которые приходится проходить видеосигналу, чтобы из совокупности цифр на носителе превратиться в картинку на экране, может превышать десяток, и каждая что-то с сигналом делает, причем не всегда хорошее. И далеко не всегда трудности, стоящие на этом пути, преодолеваются успешно. Давайте попробуем разобраться, откуда "растут ноги" у всех этих проблем, а для начала вспомним, как вообще устроено телевидение, в котором до полного и всеобщего цифрового счастья пока еще шагать и шагать, несмотря на все декларации.
Стандарты ТВ-сигнала
Привычные аббревиатуры PAL, NTSC и SECAM относятся лишь к цветному телевидению (подробнее о них см. врезку "Системы цветного телевидения"), мы же поговорим о стандартах вещательного ТВ-сигнала[Английское слово broadcasting (телерадиовещание) можно перевести еще и как "бросание во все стороны". Происхождение этого термина довольно любопытное: его ввел в обиход преподаватель калифорнийского колледжа Ч. Хэрольд, построивший в 1909 году первую в мире широковещательную радиостанцию. Предками Хэрольда были фермеры, называвшие словом "броудкастинг" посев семян вразброс.], устанавливающих общие правила кодирования/передачи сигнала и обозначающихся буквами латинского алфавита от А до N. Учитывая, что система, обозначающаяся буквой К, существует в двух версиях (просто К и К’), получаем четырнадцать стандартов, из которых сейчас применяется десять. Эти системы устанавливают число строк, частоту кадров, способ кодирования звука (АМ или FM) и видеосигнала (прямой, positive - когда большей яркости соответствует большая амплитуда сигнала, или инвертированный, negative - наоборот), полосу частот и некоторые специальные параметры (сдвиг несущей, ширину боковой полосы и т. д.).
Конечно, все тридцать комбинаций (три стандарта цветности, помноженные на десять стандартов передачи) на практике не применяются, однако даже один лишь PAL существует в пяти модификациях. Например, использующийся в большинстве европейских стран PAL B/G представляет стандарты 625 строк/50 Гц (B и G относятся к разным длинам волн - МВ и ДМВ), а вот PAL M имеет совпадающую с американским стандартом развертку 525 строк/60 Гц (этот стандарт используется в Бразилии). В России и Франции, использующих, как известно, один и тот же стандарт цветности SECAM, системы передачи в метровом диапазоне различаются: SECAM D/K (модуляция видеосигнала negative) в России и SECAM L (positive) во Франции.
На самом деле оговоренное количество строк для того или иного стандарта не соответствует реально отображаемому, которое оказывается меньше номинального: обратный ход луча не может происходить мгновенно, тогда как передача строк идет непрерывно. Потому часть строк (и элементов в каждой строке) теряется: например, для сигнала NTSC с разложением 525 строк реальное изображение состоит примерно из 480 строк по 640 элементов. Узнаете? Правильно, отсюда и возник компьютерный стандарт VGA. Время обратного хода часто используют для передачи служебной информации - например, телетекста.
Как устроено аналоговое ТВ
Со времен изобретения передающей телевизионной трубки Владимиром Козьмичем Зворыкиным (окончательный вариант под названием "иконоскоп" был представлен публике в 1933 году) телетрансляции осуществляются в общем-то одинаково. В передающей трубке узкий луч, сформированный из потока электронов, построчно обегает матрицу светочувствительных элементов (Зворыкин использовал специальным образом обработанные зерна серебра). Ток от источника высокого напряжения в цепи, замыкающейся через этот луч, зависит от освещенности каждого элемента. В результате на выходе получается развернутая во времени последовательность импульсов тока различной величины, пропорциональных яркости изображения в каждой точке. Преобразовать эту последовательность в модулированные электромагнитные колебания и передать их в эфир (или записать на видеомагнитофон) - дело техники.
Чтобы разделить строки и кадры (или, как еще говорят, синхронизировать изображение), в конце каждой строки передается специальный импульс синхронизации строк, а в конце каждого кадра над ним надстраивается более высокий импульс синхронизации кадра. В аналоговом ТВ-приемнике используется генератор линейно изменяющегося напряжения, который заставляет луч бежать от левого края экрана к правому с небольшим наклоном. Как только встречается импульс синхронизации, специальная схема снижает интенсивность луча до минимума (гасит луч) и быстро перемещает его: для строчного импульса - по горизонтали в начало новой строки, для кадрового - в исходную позицию в левом верхнем углу. То есть луч в приемнике как бы копирует луч в передающей трубке.