Удивительно простой и дешевый способ изготовления периодических нано– и микрорешеток предложили ученые из Принстонского университета. Как и почему он работает, пока не очень понятно, но уже ясно, что эта технология будет востребована во многих областях – от электроники и оптики до биологии и химии.
Каждый, кто хоть раз ронял что-нибудь стеклянное, знает на какие причудливые осколки порою разбиваются хрупкие предметы. Несмотря на обилие теорий, механизм роста трещин, который определяет форму осколков, до сих пор не очень понятен. И тем более удивительно, что в Принстоне научились использовать этот загадочный процесс.
Новая технология получения нанорешеток предельно проста. Между двумя кремниевыми пластинами толщиной примерно в полмиллиметра и размером до нескольких сантиметров запекают тонкий слой полистирола или другого стеклообразного полимера. Затем для инициации роста трещины с одной стороны в середину слоя пластика вставляют лезвие бритвы и разрывают пластины. Слой полимера колется так, что получается пара дополняющих друг друга поверхностей с одинаковыми бороздками. Ширина бороздок оказывается примерно вчетверо больше толщины полимера и кроме этого практически ни от чего не зависит. Таким простым способом уже удалось получить решетку с периодом всего-навсего 60 нм.
Эксперименты показали, что решетки получаются из полимеров почти любого состава и плотности. Важно лишь, чтобы полимер был аморфным и достаточно хрупким, поскольку нагретое выше температуры стеклования вещество при разрыве деформируется и трещина в нем не возникает. И, наконец, полимер должен прочно приклеиться к кремнию, чтобы потом не оторваться.
Разумеется, для получения подобных нанорешеток уже имеется множество различных технологий, от фотолитографии и нанопечати до использования электромагнитных неустойчивостей. Однако ни одна из них не может сравниться с новым способом по простоте и дешевизне. Сейчас принстонские ученые, не забыв запатентовать новый способ, пытаются разработать детальную теорию образования таких нанорешеток. Без теории трудно будет найти оптимальные условия формирования решеток и определить их минимально возможный период. ГА
Крутим помаленьку
Первый кремниевый полевой транзистор для спин-поляризованных электронов разработали специалисты из Делавэрского университета в Ньюарке при поддержке коллег из Кембриджа. Это еще один важный шаг на пути к практическому внедрению спинтроники.
В новом устройстве, как и в обычном полевом транзисторе, приложенное к затвору напряжение управляет величиной тока. Только электроны в нем имеют одинаково ориентированный спин, а это значит, что они могут нести дополнительную информацию по сравнению с электронами в обычном транзисторе. Это не первое устройство такого типа. Два года тому назад подобный прибор был изготовлен в Базельском университете на основе углеродных нанотрубок. Но кремний пока еще остается основой электроники, а новый транзистор полностью совместим с обычным технологическим процессом и гораздо ближе к коммерческой реализации.
Основу транзистора составляет вертикальный канал из чистого кремния длиной 10 мкм, над которым расположен управляющий электрод. Спин-поляризованные электроны впрыскиваются в канал сверху и движутся вниз сравнительно долго. За это время их спин поворачивается благодаря магнитному полю, порождаемому тонким слоем ферромагнетика. Но если к электроду приложить напряжение, то электроны пролетают канал быстрее и их спин поворачивается гораздо меньше. На выходе из прибора стоит фильтр, выделяющий электроны с нужной ориентацией спина. В некоторых экспериментах ток увеличивался в семь раз при повышении напряжения с нуля до трех вольт.
К сожалению, новый транзистор пока работает лишь при низкой температуре – около 85 градусов выше абсолютного нуля – и способен управлять только очень слабым током – десятки пикоампер. И если, считают авторы, с увеличением рабочей температуры до комнатной проблем не будет, то над увеличением тока придется еще поработать. ГА
Пропустим по двести?
Знаменательный повод обратиться друг к другу с этой фразой настал для более чем 72 тысяч человек, причастных к созданию русской Википедии (ru.wikipedia.org): в ее копилку легла двухсоттысячная статья. За год с небольшим, прошедший после покорения «стотысячника» (см. «КТ» #650), отечественная Вики успела сделать многое. Заткнув за пояс по числу статей 120-тысячный Энциклопедический словарь Брокгауза и Ефрона, она стала крупнейшей русскоязычной энциклопедией, попутно стяжав целый букет разнообразных призов, среди которых – престижнейшая "Премия Рунета" в номинации "Наука и образование".
Очередной Рубикон был перейден утром 4 сентября, когда «википедист» Ekamaloff (в миру – Эльдар Камалов из Караганды) выложил начальный вариант статьи, посвященной французскому микробиологу, нобелевскому лауреату Андре Мишелю Львову. Словно в капле воды, в ней отразился кипучий характер Википедии: первое поздравление автору пришло всего через двадцать минут с момента появления на свет статьи-юбилярши, а за первые двенадцать часов в нее было внесено около двадцати правок, принадлежащих перу десятка соавторов из четырех стран.
Некоторые старожилы русской Википедии сетуют на то, что она утратила присущее ей некогда экспоненциальное увеличение числа статей, и отображаемый в нынешних "окнах роста" график все больше походит на прямую линию. Впрочем, несмотря на это, русская Вики сохранила за собой одиннадцатое место в мире по количеству статей среди языковых разделов (всего на данный момент их больше 250). А по их качеству, как уверяют администраторы, она вполне "бьет в десятку", поскольку растет не только вширь, но и вглубь: полным ходом идет работа по повышению качества содержимого. Ныне более полутысячи Вики-статей признаны «хорошими», и почти двести, пройдя через горнило голосования, удостоены "высшей пробы" – статуса избранных.
Если предыдущие «рубежные» статьи в русской Вики, как правило, отмечались вывешиванием цветастых баннеров на ее заглавной странице, то нынешний юбилей проходит куда сдержаннее: администрация подготовила лишь скромный пресс-релиз. Что ж, праздновать особо некогда: как заметил один из участников «юбилейного» обсуждения, "впереди возможность отличиться на 300К – дружно приближаем эту цифру". Тем более что есть на кого равняться: старшая сестра отечественной Википедии, говорящая на языке Шекспира, уже вплотную подошла к двухмиллионному рубежу. ДК
Поздний дебют
Далеко не все читатели «КТ» знают, что в континууме великого жанрового разнообразия текстов, написанных для нашего журнала признанным мэтром Евгением Козловским, зияет досадная брешь – ни одной опубликованной новости (написанная, но неопубликованная – была). Исправляя это досадное упущение, мы решили сохранить в неприкосновенности нетрадиционный для новостной рубрики стиль изложения. ВБ
Около трех месяцев назад в «Огороде» "По дороге в Дамаск" ("КТ" #691) я рассказал о фантастической фотосессии, которую российское отделение Epson устроило полутора десяткам журналистов (в том числе и мне) на предмет съемки местных древностей и современностей (включая пейзажи). И вот прошло должное время, архивы разобраны, лучшее – осмыслено и обработано, но, что самое главное, – напечатано в формате А2 на эпсоновском флагмане Stylus Pro 3800, который я недавно представлял в «Огороде» "Концерт по заявкам, или Двое внуков Эпа" ("КТ" #698). Более того, сочинен, сверстан и отпечатан даже каталог выставки, – пришло время состояться ей самой.
И она должна состояться. C 19 по 30 сентября в галерее М’АРС (www.epson.ru/Jordan). Если кто не в курсе – это в Пушкаревом переулке, в районе Сретенки.
На выставке – по результатам той, весенней иорданской поездки, – будут представлены работы Марии Альдубаевой из журнала "Лучшие цифровые камеры", Алексея Ерохина ("Digital Photo"), Александра Жилина ("Digital Photographer", Украина), Андрея Кокоурова ("Chip"), Игоря Нарижного ("Digital Camera"), Владимира Нескоромного ("Foto&Video"), Александра Повшенко ("Фотодело") и, наконец, вашего покорного слуги, представлявшего в Иордании Издательский дом "Компьютерра".
Приходите! Надеюсь – не разочаруетесь! ЕК
Губки для статуи
Новый способ очистки древних фресок, картин и скульптур предложили химики из Флорентийского университета. Их магнитная наногубка-гель оказалась удивительно проста в использовании и эффективна.
Большинство способов очистки поверхности стары как мир. Разумеется, благодаря успехам химии сами моющие средства быстро совершенствуются, но для их нанесения и последующего удаления вместе с грязью используются все те же тампоны, губки, тряпки, щетки и кисточки. И, несмотря на их огромное разнообразие, принципиально тут мало что изменилось.
На переднем крае трудной и повседневной борьбы с грязью находятся реставраторы, возвращающие первозданный вид уникальным произведениям, чья утрата была бы невосполнима. Глубоко въевшаяся грязь, как правило, имеет многовековую историю и зачастую более прочна, чем нежные полуистлевшие шедевры.