205. Дедушкины часы остановились точно в 9 ч 49 мин 5 1/11 с.
206. С помощью 6 стрел можно выбить 100 очков, послав их соответственно в 17, 17, 17, 17, 16, 16.
207.На помещенном ниже рисунке слева показано, как можно разрезать квадрат на 5 частей, из которых удается сложить 2 греческих креста одинаковых размеров. Одна из частей имеет форму креста, а из остальных четырех частей складывается второй крест. После того как эта головоломка стала хорошо известной, я нашел способ добиться того же результата, разрезав квадрат только на 4 части, как показано в центре рисунка. Из этих частей можно сложить 2 креста, изображенные справа.
Для того чтобы разрезать квадрат на 5 частей, из которых можно сложить 2 греческих креста различных размеров, разрежьте его, как показано на помещенном ниже рисунке слева. Часть А представляет собой меньший крест, а из четырех других частей можно сложить большой крест, как показано на рисунке справа.
На помещенном ниже рисунке показано, каким образом греческий крест можно разрезать на 5 частей, из которых удается сложить 2 креста одинаковых размеров. Одна часть совпадает с искомым крестом. Из оставшихся частей можно сложить второй крест.[36]
208. Существует простой способ решения этой задачи, где не приходится возиться с квадратными корнями. Сначала разделим 600 на 250 и прибавим 2, что дает 4,4. Разделив 600 на 4,4, мы получим расстояние от правого бегуна до моста слева, равное 136 4/11 ярда. Если мы сложим это значение с 250 (расстоянием от того же самого бегуна до моста справа), то получим 386 4/11 ярда, что и будет ответом к задаче.
[В этом способе, применимом к любому прямоугольному треугольнику, озадачивает прибавление двойки.
Предположим, что а – расстояние от правого бегуна до левого моста, b – расстояние от него же до правого моста, с – катет треугольника длиной в 600 ярдов и d – гипотенуза. По теореме Пифагора (а + b)2+ с2 = d2. Мы знаем также, что а + d = b + с, то есть d =b + с – д. Подставляя это в предыдущее равенство, мы найдем, что все квадраты сократятся и получится формула a = bc/(2b + c) = c/(c/b + 2) – M.Г.]
209. У каждой Музы вначале было 48 яблок, а у каждой Грации 144 цветка, по 36 штук каждого цвета. Каждая Муза дала каждой Грации по 4 яблока, а каждая Грация дала каждой Музе дюжину цветков (по 3 каждого цвета). После такого обмена у каждой девушки оказалось по 36 яблок и по 36 цветков (по 9 штук каждого цвета).
210. Мальчишка с цифрой 6 должен встать на голову с другой стороны так, чтобы получилось число 931.
211. Ответ вы видите на рисунке.
212. О'Шогнесси решил дать матери вдвое больше, чем дочери, а сыну вдвое больше, чем матери. Этим условиям легко удовлетворить, если передать дочери 1/7, матери – 2/7, а сыну – 4/7 всего состояния.
213. У фермера было 7 сыновей и 56 коров. Старший сын взял две коровы, а его жена взяла 6 коров. Следующий сын взял 3 коровы, а его жена – 5. Следующий сын взял 4 коровы и его жена – 4 и т. д., пока седьмой сын не взял 7 коров, ничего не оставив своей жене. Любопытно, что у каждой семьи оказалось теперь по 8 коров; поэтому каждая семья взяла по одной лошади, и в результате у всех оказалось скота на одинаковую сумму.
214. Сумма девяти цифр равна 45 и, следовательно, делится на 9. Вне зависимости от расположения в двух числах этих цифр и нуля сумма двух чисел также должна делиться на 9.
Более того, когда вы складываете цифры в любом числе, кратном 9, результат тоже всегда будет кратен 9. Поэтому, чтобы определить недостающую цифру, мы должны сложить сохранившиеся цифры ответа; при этом получается 10. Затем мы вычитаем это число из 18 (наименьшее число, кратное 9 и превосходящее 10) и получаем 8. Это и есть недостающая цифра.
215. Лошадь пробежала следующие друг за другом четверти мили соответственно за 27 ł/4, 27, 27 1/8 с, а всю милю – за 1 мин 48 1/2 с.
216. Для того чтобы поместить слона в центр сиамского флага, разрежьте его на две части, как показано на рисунке, а затем переверните внутреннюю ромбовидную часть.
Наикратчайший путь на плане сада такой: 15, 16, 12, 11, 10, 14, 13, 9, 5, 1, 2, 6, 7, 8, 4, 3, «сердечко».
217. [Пусть х – число акров, а у – число бушелей, тогда можно составить следующие уравнения:
(3/4у + 80)/ x = 7,
(y + 80)/x = 8
Решая их, мы находим, что фермер отдавал ежегодно в уплату за аренду 80 бушелей, а на его ферме было 20 акров земли. – М. Г.]
218. [Если х – вес (в фунтах) индюков, купленных миссис О'Флаерти, равный по условию весу гусей, то можно составить уравнение
21x/24 + 21x/18 = 2x + 2
Отсюда х = 18. Следовательно, миссис О'Флаерти потратила 11,52 доллара на индюков и 8,64 доллара на гусей, то есть общая сумма затрат составила 20,16 доллара. – M Г.]
219. Костюм был продан за 13,75 доллара.
220. Джимми 10лет и 16/21 года.
221. [Сам С. Лойд не объясняет выигрышной стратегии этой игры. Стратегия фермера состоит в том, чтобы ходить в диагонально противоположные углы квадратов до тех пор, пока он не загонит индюка к краю доски, после чего он уже легко может выиграть. Если фермер ходит первым, он должен ходить на ячейку 35. Индюк не может добиться преимущества, поскольку место между ячейками 9 и 10 пусто. Следующая типичная игра прояснит стратегию:
– М. Г.]
Вторая головоломка решается в 24 хода следующим образом: 52, 14, 15, 8, 9, 16, 18, 10, 11, 42, 39, 31, 33, 25, 22, 45, 50, 4, 5, 64, 60, 2, 3, 7.
222. На рисунке видно, что ювелир украл из каждого горизонтального ряда по камню, а затем переставил нижний камень на самый верх.
223. [Практически это разновидность задачи 194. Приложив треугольник к квадрату, как показано на первом рисунке к решению задачи 194, данную задачу можно решить с пятью частями. Поскольку в данной задаче треугольник составляет меньшую часть квадрата, чем в задаче 194, другие два способа решения последней здесь неприложимы. – M. Г.]
224. Миссис О'Нейл потратила на бананы 33,6 доллара. На эти деньги она могла купить по 48 гроздей красных и желтых бананов, а всего – 96 гроздей. Но поделив всю сумму пополам и затратив 16,8 доллара на красные и 16,8 доллара на желтые бананы, она могла бы купить 42 грозди красных и 56 гроздей желтых бананов, то есть всего 98 гроздей.
225. Джоко движется от окна к окну в следующем порядке: 10, 11, 12, 8, 4, 3, 7, 6, 2, 1, 5, 9. Этот путь проходит по широкому пространству между нижним и средним рядами окон только дважды.
226. Головоломку можно решить за 8 ходов следующим образом: Тафт перепрыгивает последовательно через Нокса, Джонсона, Лаффолета и Кэннона. Грей перепрыгивает через Фербенкса. Хьюг перепрыгивает через Брайена. Грей перепрыгивает через Хьюга. Тафт перепрыгивает через Грея.
[Если мы будем рассматривать серию последовательных прыжков одного человека как один ход, то в решении Лойда требуется 5 ходов. Однако задачу можно решить всего за 4 хода. – M Г.]
227. Ответ ясен из рисунка.
228. Кость должна выпасть единицей вверх. Если прибавить сюда 4 на боковой грани, то это дает сумму, равную 5. Сумма оставшихся чисел на боковых гранях (5, 2 и 3) равна 10, что дает другому игроку преимущество в 5 очков.
В шестеричной системе число 109 778 запишется как 2 204 122. Цифра справа представляет единицы, следующая цифра дает число шестерок, третья справа цифра означает число «тридцатишестерок», четвертая цифра показывает число «порций» по 216 и т. д. Эта система основана на степенях 6 вместо степеней 10, как это имеет место в десятичной системе счисления.
229. Задачу плотника можно решить, распилив доску на 3 части, как показано на рисунке.
230. Дети купили 3 шоколадные конфеты, 15 шоколадных драже и 2 леденца.
231. С первого взгляда кажется, что общий улов может выражаться любым числом от 33 до 43, поскольку А может получить от 0 до 11 рыб, и доли других становятся очевидными. Однако, поскольку в итоге каждый мальчик получил одинаковое число рыб, ясно, что общая сумма должна равняться 35 или 40. Если мы возьмем последнее значение, то обнаружим, что выполнены все условия. А поймал 8 рыб, В – 6, С – 14, D – 4 и E -8 рыб. После того как В, С и D объединили свой улов и взяли по одной трети, у каждого из них оказалось по 8 рыб. Независимо от того, как мальчики объединяли и делили свою добычу, доля каждого останется равной 8 рыбам.
232. Ответ показан на рисунке.
233. Пирог тетушки Мэри можно разрезать на 22 части, как показано на рисунке.
[Эта классическая задача представляет дополнительный интерес для тех, кого интересует формула, по которой можно вычислять максимальное число частей при заданном числе разрезов. – М. Г.]