Было бы долго перечислять все области науки, техники и промышленности, которые так или иначе связаны с теорией движения небесных тел, т. е. с небесной механикой. Например, мореплавание, аэронавигация, картография и нахождение залежей подземных ископаемых нуждаются в точном теоретическом предвычислении положений небесных светил. Стоит вспомнить, например, как широко пользовались астрономическими методами ориентировки летчики Герои Советского Союза при организации плавучей полярной станции, при перелете через Северный полюс, при перелетах вдоль всего СССР и т. п. Кроме того, необходимо доказать, что если взаимное притяжение планет и расстраивает их движение по сравнению с элементарной теорией движения двух тел, то теория тяготения все же способна предусмотреть их количественно. При этом результат подсчета должен в точности совпадать с фактическими данными. Без подобного доказательства абсолютная истинность теории тяготения все же может быть подвергнута сомнению.
Ньютон вполне отдавал себе отчет в существовании всех этих осложнений, он отметил их, но успел коснуться их математически лишь вскользь, хотя главнейшие неправильности в движении Луны, установленные наблюдателями еще до изобретения телескопа, он смог об'яснить.
На долю последователей Ньютона – Эйлера, Клеро, Даламбера, Лагранжа и Лапласа выпало завершить! грандиозное здание, заложенное Ньютоном, и довести его до полного совершенства. Лаплас застал Эйлера и Даламбера еще в расцвете их творческих способностей. Воинствующим оплотом защитников Ньютона явилась не Англия, а Франция, так долго вначале не принимавшая ньютонианства. Лаплас был младшим в этой плеяде великих умов, и он в значительной степени закончил то, что не вполне удалось его предшественникам и старшим товарищам.
После Ньютона Эйлер и Клеро первыми принялись за разработку небесной механики. В 1747 году Эйлер закончил работу о возмущениях в движении планет Юпитера и Сатурна. Следующие работы Эйлер посвятил исследованию движения Луны. Огромные услуги дальнейшему развитию небесной механики принесла разработка Эйлером методов дифференциального и в особенности интегрального исчислений, которые в его руках (по сравнению с тем, чем располагал Ньютон) выросли необычайно. Недаром Лаплас часто говаривал постоянно окружавшей его молодежи: «Читайте, читайте Эйлера, он наш общий учитель».
Так же велики были и заслуги Даламбера, которого можно считать воспреемником Лапласа во французской Академии наук. В один день с Клеро он представил в Академию попытку решения проблемы трех тел и ее применения к теории движения Луны. Стало уже выясняться, что решение общей задачи о трех телах вообще не может быть получено вполне точно. Можно написать уравнения, соответствующие этой проблеме, но затем встает задача их интегрирования. Она оказалась столь трудной, по крайней мере при тогдашнем состоянии математики, что Клеро махнул на эти уравнения рукой, сказав: «Пусть интегрирует, кто сможет».
Однако оказалось возможным найти решение поставленной задачи приближенно или для частных случаев. Тогда дело свелось к нахождению наиболее точных и практически наиболее удобных способов приближенного решения, и лучшие представители небесной механики начали соревнование в этой области.
Даламбер решил свою задачу, пожалуй, удачнее, чем Клеро, но, как часто бывало с ним, не приложил своих формул к определенным конкретным случаям, известным в природе. Он ограничился – составлением небольших таблиц движения Луны.
Зато Даламбер, как упоминалось, составил к 1743 году знаменитый трактат по механике – «Аналитическую механику», связавший воедино и обычную земную механику и небесную. Развитие науки о небе обогатило и прикладные знания, призванные двигать «самую земную», «самую практическую» технику.
В 1749 году Даламбер разработал строгую теорию прецессии или предварения равноденствий, которую Ньютон мог рассмотреть лишь в общих чертах. При этом он об'яснил также и явление нутации – небольших колебаний земной оси, осложняющих явление прецессии и заставляющих земную ось как бы колебаться около того направления, – куда ее влечет действие прецессии. Оказалось, что сила, с которой Луна действует на экваториальную выпуклость Земли, меняется, ибо положение лунной орбиты в отношении Земли непрерывно и быстро меняется. Это создает изменение сил, вызывающих прецессию, – осложняет явления прецессии, т. е. создает то, что было названо нутацией (нутация была открыта уже после Ньютона – в 1721 году). Алексис Клеро в еще большей степени, чем его конкуренты – Эйлер и Даламбер, способствовал торжеству ньюотонианских идей. Еще двенадцатилетним мальчиком он сделал доклад французской Академии наук об изученных им кривых линиях. В дальнейшем его плодовитость немногим уступала эйлеровской.
Кроме теории Луны, Клеро занимался вопросом о фигуре Земли, и его теория не только далеко продвинула вперед дело Ньютона, но до сих пор сохранила большое значение даже в ряде чисто практических вопросов.
Однако наибольшей известностью пользуется предсказанное Клеро появление кометы Галлея. Галлей, ученик Ньютона, установил, что комета, наблюдавшаяся им в 1682 году, тождественна с рядом комет, наблюдавшихся ранее и нередко наводивших ужас на невежественное население Европы. Он нашел, что комета периодически возвращается к Солнцу, когда мы ее и видим, т. е., что эта комета обращается по орбите подобно планетам, но только эллипс ее вытянут гораздо сильнее. Время ее обращения он мог определить лишь приблизительно – семьдесят пять, семьдесять шесть лет. Это была первая периодическая комета, открытая человечеством. Галлей решился даже предсказать следующее появление своей кометы в 1758 году, когда сам он не будет в живых. Клеро предпринял грандиозную работу по точному предвычислению следующего появления кометы. Отметив значение теории тяготения, он писал: «Истинные любители науки ожидали комету с нетерпением, потому что она должна была своим появлением подтвердить законы Ньютона; другие же надеялись увидеть философов осмеянными, а их теории поколебленными, и утверждали, что она не вернется, а открытия Ньютона и его последователей не подтвердятся. Многие из них уже ликовали и смотрели на год задержки в появлении кометы, как на доказательство несостоятельности теории. Я хочу показать… что эта задержка не может повредить системе „всемирного тяготения“, а, наоборот, составляет необходимое следствие ее, и что комета опоздает более, чем на один год».
Действительно, удалившись от Солнца, комета должна была сблизиться с Юпитером, и его притяжение должно было задержать возвращение кометы.