My-library.info
Все категории

Игорь Дмитриев - Упрямый Галилей

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Игорь Дмитриев - Упрямый Галилей. Жанр: Прочая документальная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Упрямый Галилей
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 декабрь 2018
Количество просмотров:
169
Читать онлайн
Игорь Дмитриев - Упрямый Галилей

Игорь Дмитриев - Упрямый Галилей краткое содержание

Игорь Дмитриев - Упрямый Галилей - описание и краткое содержание, автор Игорь Дмитриев, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
В монографии на основании широкого круга первоисточников предлагается новая трактовка одного из самых драматичных эпизодов истории европейской науки начала Нового времени – инквизиционного процесса над Галилео Галилеем 1633 года. Сам процесс и предшествующие ему события рассмотрены сквозь призму разнообразных контекстов эпохи: теологического, политического, социокультурного, личностно-психологического, научного, патронатного, риторического, логического, философского. Выполненное автором исследование показывает, что традиционная трактовка указанного события (дело Галилея как пример травли великого ученого церковными мракобесами и как иллюстрация противостояния передовой науки и церковной догматики) не вполне соответствует действительности, опровергается также и широко распространенное мнение, будто Галилей был предан суду инквизиции за защиту теории Коперника. Процесс над Галилеем – событие сложное, многогранное и противоречивое, о чем и свидетельствует красноречиво книга И. Дмитриева.

Упрямый Галилей читать онлайн бесплатно

Упрямый Галилей - читать книгу онлайн бесплатно, автор Игорь Дмитриев

1557

Ньютон И. Математические начала натуральной философии… С. 244.

1558

Newton I. Opticks… P. 376. Есть русский перевод, который я не использовал: Ньютон И. Оптика или Трактат об отражениях…

1559

Мамардашвили М.К. Картезианские размышления… С. 162.

1560

Там же. С. 164.

1561

Сказанное, однако, означает, что такое понимание рацио подразумевает признание некой неразложимой нашей познавательной способностью фактичности, то есть обстояния дел, относительно причин которого мы ничего ясного и отчетливого сказать не можем. Иными словами, в самом фундаменте нашего знания есть нечто, что не обладает «рациональной прозрачностью» (Мамардашвили М.К. О рациональности… С. 354), что нельзя логически вывести, до чего нельзя дойти умом, оно есть потому, что есть, так случилось. Поэтому-то картезианский рационализм и есть среднее между тем знанием, относительно которого мы имеем ясные и отчетливые представления касательно механизма происхождения и получения этого знания, и тем, относительно чего мы подобных представлений не имеем.

1562

Декарт Р. Сочинения… Т. I. С. 182.

1563

Там же.

1564

Там же. С. 194.

1565

Там же. С. 192.

1566

Там же.

1567

Там же. С. 182 – 183.

1568

Там же. С. 193.

1569

Там же.

1570

Там же. С. 190.

1571

Там же. С. 189 – 190.

1572

Там же. С. 190.

1573

Machamer P., McGuire J. E. Descartes’s changing mind… P. 407.

1574

Декарт Р. Сочинения… Т. I. С. 199.

1575

Там же. С. 197.

1576

Там же.

1577

Там же.

1578

Основные картезианские «правила для руководства ума» действительно несложны: начинай с простого и очевидного, затем путем дедукции сформулируй более сложные высказывания и, наконец, действуй при этом так, чтобы не было упущено ни единого звена в цепи умозаключений. Талант, острота ума, наблюдательность – это, по Декарту, все побочные, преходящие обстоятельства, они не должны быть определяющими, ибо новое знание может получить любой человек, наделенный двумя способностями – интуицией и дедукцией – и усвоивший рационалистический метод, благодаря которому он обретает «способ нахождения собственными силами, силами посредственного ума, всех тех истин, кои в состоянии открыть лишь самые тонкие умы» (там же. С. 160). И все. Производство знаний можно ставить на поток, успех обеспечен заранее, механически. Однако на деле ни схоластам, ни «новым натурфилософам» все же так и не удалось наладить массовое производство законов природы с помощью некой логической машины. И, замечу попутно, видимо, совершенно правы те исследователи, которые отмечают глубинное сходство между схоластической традицией и радикальным антитрадиционализмом картезианской философии.

1579

Там же.

1580

Там же.

1581

Там же. С. 198.

1582

Там же.

1583

Там же.

1584

Там же. С. 199.

1585

Декарт Р. Сочинения… Т. II. С. 566 – 567.

1586

Декарт Р. Сочинения… Т. I. С. 348 – 349.

1587

Там же. С. 407.

1588

Там же. С. 419 – 420.

1589

Там же. С. 200.

1590

Там же.

1591

Там же. С. 204. Декарт иллюстрирует последнее «правило» примером движения камня, находящегося в праще (см. Приложение VI).

1592

Там же. С. 367 – 368.

1593

Там же. С. 199 – 200.

1594

В известном отношении картезианский мир напоминает космос Парменида.

1595

Декарт Р. Сочинения… Т. I. С. 200.

1596

Там же. С. 204.

1597

Там же. С. 372.

1598

Там же. С. 204.

1599

Там же.

1600

Там же.

1601

Там же. С. 205.

1602

Там же.

1603

«Склонность (conatus)» тела к прямолинейному движению не может быть реализована в силу того, что в картезианском «новом мире» такое движение логически невозможно по причине отсутствия пустоты и тождества материи и протяженности, откуда и следует, что движение по прямой должно рассматривать как некую присущую телу потенциальность.

1604

Декарт Р. Сочинения… Т. I. С. 205.

1605

AT, I. P. 73 – 74.

1606

Bechler Z. Newton’s Physics… P. 224.

1607

Декарт признавался, что «никогда не обращался к вопросам, рассмотрение которых зависело от измерений скоростей» (письмо математику Ф. де Бону от 30 апреля 1639 года // AT, II. P. 542). Другой пример: сформулировав семь правил столкновения тел, Декарт поясняет, что «опыт, на первый взгляд, как будто противоречит изложенным правилам. Однако причина тому очевидна, ибо правила эти предполагают, что оба тела, B и C, совершенно тверды и настолько отдалены одно от другого, что вокруг них нет никакого вещества, которое могло бы способствовать или препятствовать их движению, а таких тел мы в нашем мире не усматриваем» (Декарт Р. Сочинения… Т. I. С. 377 – 378).

1608

Независимо от того, бросал ли Галилей в 1597 году шары (пушечные ядра) разного веса с Пизанской башни или нет, можно с уверенностью сказать: ни этот эксперимент (если он действительно проводился, что, на мой взгляд, более чем сомнительно), ни его знаменитые опыты с качением шаров по наклонной плоскости не дали, и в принципе не могли дать, никаких результатов, которые бы способствовали установлению Галилеева закона свободного падения (s = gt2/2). Скорее они свидетельствовали бы в пользу традиционной точки зрения. Действительно, падение сферического тела в воздухе вблизи поверхности Земли описывается следующим уравнением: s = s0lg ch(t/tn), где s0 = 8ρR/30; tn = s0(ρρ0)/ρg; ρ и ρ0 – плотности тела и среды, в которой происходит падение; R – радиус тела; C – так называемый коэффициент лобового сопротивления; s – путь, пройденный телом за время t (см.: Feinberg G. Fall of Bodies Near the Earth…). Полагая C = ½ и t << t0 ≈ (s0g)½, запишем приведенную формулу в виде ряда (при t/t0 << 1): s = (½)gt2[1 – (1/6)(t/t0)2 + …]. Подставляя в приведенные выражения соответствующие значения величин (высота Пизанской башни около 100 локтей (braccia), или 56 метров), получаем, что в случае свинцовых шаров весом 100 фунтов и 1 фунт время падения составит соответственно 3,39 и 3,42 сек. Разумеется, такую разницу Галилей, измерявший время по пульсу (sic!), зафиксировать не мог. Однако более легкий шар должен «отстать» от тяжелого (в момент удара последнего о землю) на 0,82 метра (в случае же стальных шаров тех же масс отставание должно было быть еще большим – 1,02 метра). Вряд ли это можно было не заметить. Что же касается Галилеевых экспериментов с качением шаров, то они сами по себе не давали никакого результата. Уравнение движения шара по наклонной плоскости имеет вид: s = (5/14)g[sinθ – (k/R)cosθ]t2, где θ – угол наклона плоскости (желоба в опытах Галилея); R – радиус шара; k – коэффициент трения качения (трением скольжения пренебрегаем). Из этой формулы (при 0,01 < k < 0,05) после подстановки в нее соответствующих величин получаем результаты, которые с хорошей точностью совпадают с результатами Галилея, но они не соответствуют «идеальному» случаю (то есть качению шара идеальной сферической формы без трения по абсолютно гладкой поверхности). Иными словами, закон свободного падения (при θ = 900) никак не получался из экспериментов Галилея.

1609

Детально об этом см.: Дмитриев И.С. Увещание Галилея… Глава III.

1610

Determinatio, по Декарту, – это то, что зависит от скорости или «способности движения (force de se mouvoir)» тела и что определяет направление его движения. Напомню, что в картезианской механике «сила <…>, которая обусловливает поддержание движения <…>, отлична от силы, которая определяет, что <…тело> будет двигаться в одном, а не в другом направлении» (AT, VI. P. 94).


Игорь Дмитриев читать все книги автора по порядку

Игорь Дмитриев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Упрямый Галилей отзывы

Отзывы читателей о книге Упрямый Галилей, автор: Игорь Дмитриев. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.