Фосфорилированные углеводы моментально всасываются в кишечнике, никто не берется даже подсчитать их гликемический индекс, и моментально включаются в обмен. Фосфорилированные углеводы это новая веха в спортивном питании на дистанции и во время тренировок. Их прием позволяет проводить тренировки с невиданной доселе эффективностью и организовать питание на дистанции, например, стайеров так, что все спортивные достижения резко улучшатся. Фосфорилированные углеводы — это отличное средство для карбогидратной загрузки, для посттренировочной загрузки углеводами. Их применение позволяет значительно повысить устойчивость организма к гипоксии (недостатку кислорода в тканях) и значительно ускорить посттренировочное восстановление. Интересно то, что, будучи принятыми, внутрь, фосфорилированные углеводы резко увеличивают гликемический индекс обычных, нефосфорилированных углеводов. Это происходит потому, что сахара всасываются в кишечнике по концентрационному градиенту. Фосфорилированные углеводы быстро включаются в энергетический обмен, и в клетках кишечника концентрацивя свободных моносахаридов становится, намного меньше, чем в просвете кишечника. Отсюда и ускорение всасывания.
В развитых странах такие препараты выпускаются уже много лет. Так, например, препарат «фруктэргил» представляет из себя не что иное, как фруктозо-1,6-дифосфат-фосфорилированный углевод, которые моментально включается в обмен с выходом большого количества энергии. Выпускается глюкозо-1-фосфат, глюкозо-6-фосфат и т. д.
Все эти препараты выпускаются под разными коммерческими названиями и очень широко используются как в спорте, так и в повседневной жизни для скорейшего снятия утомления. Большинство из этих препаратов синтезировано и используется для лечения и профилактики утомления во Франции и Италии. Постепенно создается новая индустрия, индустрия лекарств для здорового человека, где грань между лекарством и пищей незаметна и порой бывает трудно отличить одно от другого.
Советскими[1] учеными Чаплыгиной и Басковичем был создан оригинальный отечественный препарат «гексозофосфат». Гексозофосфат состоял из смеси глюкозо-1-фосфата, глюкозо-6-фосфата, фруктозо-6-фосфата и фруктозо-1,6-дифосфата. Препарат был с большим успехом апробирован, но в серийное производство почему-то не пошел. Почему так случилось, сейчас остается только гадать. Все мы знаем, как важен для продолжительной мышечной работы постоянный стабильный уровень сахара в крови. Не все, однако, знают, что мышцы использовать в своей работе сахар не могут (!). Они захватывают из кровотока глюкозу с одной единственной целью, пополнить запасы гликогена. Мышцы непосредственно расщепляют гликоген для совершения физической работы и вновь синтезируют его из глюкозы и частично из пировиноградной и молочной кислоты. Чем выше спортивная квалификация атлета, тем выше его способность синтезировать гликоген из молочной кислоты (в которую, в конечном итоге превращается пировиноградная кислота).
Сахар (глюкоза) компонент внутренний среды, как позвоночных, так и беспозвоночных. Наиболее постоянен уровень сахара в крови натощак у человека и высших позвоночных животных. Напомним, что кровь человека содержит 70-120 мг%[2] сахара. Птицы отличаются очень высоким уровнем сахара крови (150–200 мг%), что обусловлено их очень высоким метаболизмом. Но самым высоким содержанием сахара в организме отличаются пчелы (до 3000 (!) мг%). Не зря они приносят нам мед. Такого содержания в организме сахара (глюкоза+фруктоза) нет более ни у одного живого существа.
В последние годы был обнаружен очень интересный феномен. Оказалось, что включение глюкозы во внутриклеточный обмен прямо пропорционально скорости ее проникновения внутрь клетки. Все факторы, ускоряющие транспорт глюкозы (фосфорилирование и др.) будут приводить к ускорению углеводного метаболизма.
Интенсивная аэробная нагрузка, приводящая к развитию выраженного энергетического дефицита в мозге, мышцах, сердце, печени и др. работающих органах может в 2–2,5 раза ускорить как скорость проникновения глюкозы внутрь клетки, так и ее включение в обмен.
С жировой тканью ситуация совершенно иная. В условиях больших аэробных нагрузок проникновение глюкозы в жировые клетки начисто тормозится. Если учесть, что 90 % жира синтезируется из углеводов (глюкозы), можно понять, почему все бегуны на длинные дистанции такие тощие-претощие.
Пробовали выяснить, что больше влияет на включение глюкозы в метаболизм: скорость транспорта или фосфорилирование? Для этого ткани насыщались большими концентрациями глюкозы (400–500 мг%) и, в конце концов, торжественно объявили, что лимитирующим фактором является все-таки фосфорилирование. При дальнейшем нарастании концентрации глюкозы только от фосфорилирования зависела скорость ее включения в обмен. Вот мы опять вернулись к фосфорилированным углеводам. И видит око, да зуб неймет.
В каких органах самая высокая скорость транспорта глюкозы? В эритроцитах и в печени она на порядок (!) выше, чем в других тканях и здесь эта скорость определяется фосфорилированием.
Все мы знаем, что животные жиры вредны, а растительные полезны. Хотя злые языки давно уже поговаривают о том, что свободнорадикальное окисление растительных жиров намного сильнее, чем животных (акад. Дильман В.М и др.). Но кто бы мог подумать, что растительные жиры принимают самое активное участие в переносе углеводов через клеточные мембраны. Что зависит от скорости такого переноса, мы уже знаем. Оказывается, самое обычное увеличение в рационе дозы растительных масел значительно активизирует инсулин и изменяет жидкостные свойства клеточных мембран, делая их более проницательными для глюкозы (Mukherjec L.P. etal 1980 г.).
Во всех каталогах, расхваливающих аминокислотные смеси написано, что прием аминокислот стимулирует выброс в кровь соматроиина и инсулина, которые являются естественными «анаболиками» организма. Инсулин при этом по логике вещей должен стимулировать утилизацию глюкозы тканями. Я-то давно подозревал, что это не так. С чего бы это вдруг аминокислотам стимулировать выброс инсулина? С них и соматотропина вполне достаточно. И ведь верно! Относительно недавние исследования показали, что введение в организм чистых аминокислот не только не стимулирует, но даже тормозит выброс инсулина. Ведь соматотропин является «крнтринсулярным гормоном». Введение в организм аминокисют снижает содержание глюкозы на 62 мг% (!). Вот вам и решение спора о том, что лучше делать на ночь для сжигания жира: ужинать или принимать чистые аминокисюты. Получается, лучше принимать аминокислоты.
Циклический аденозинмонофосфат (ц-АМФ) является общепризнанным лидером среди внутриклеточных посредников возбуждающего и мобилизирующего медиаторного (гормонального) сигнала. И здесь все оказывается не так просто. В малых, физиологических концентрациях ц-АМФ усиливает утилизацию и снижение содержания глюкозы в крови, а в больших фармакологических концентрациях тормозит. Кто бы мог подумать! Классические допинги типа фенамина и первитина способны при превышении минимальных дозировок вместо энергизирующего эффекта давать обратный, тормозной. Ведь именно ц-АМФ является посредником возбуждающего сигнала всех стимуляторов.
А ведь много раз спортивные врачи замечали, что высокие дозы стимуляторов способны вместо прироста результатов дать их падение. Только объяснения все это не находило. Разглагольствовали о каком-то там запредельном торможении в нервных клетках, а разгадка оказалась проста: избыток стимулятора тормозит обмен глюкозы и все тут.
Повышение температуры тела, как, оказалось, ускоряет утилизацию глюкозы тканями. Отсюда есть повод лишний раз подумать: зачем организму повышать температуру тела во время интенсивных физических упражнений.
В организме животных и человека хром служит незаменимым микроэлементом углеводного и липидного обмена и его потребление с пищей значительно усиливает утилизацию глюкозы.
Оказывается, АТФ, которая образуется в результате, расщепления гликогена, совсем не может быть заменена той АТФ, которая образуется в результате окисления глюкозы. Это две совершенно разные вещи.
Помимо глюкозы все остальные сахара фосфорилируются и окисляются в цикле Кребса, только вот перед тем как окислиться в цикле Кребса они превращаются в глюкозу (глюконеогенез). Получается, что нет никаких биохимических обоснований для предпочтительного использования фруктозы или галактозы при диабете по сравнению с глюкозой.
В процессе пентозофосфатного цикла глюкоза не расходуется на продукцию энергии, но она служит исходным материалом для сип- теза РНК и ДНК. Анаболические стероиды, равно как и инсулин, вводимый извне, резко активизируют работу пентозофосфатного цикла.