My-library.info
Все категории

Олег Ольгин - Опыты без взрывов

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Олег Ольгин - Опыты без взрывов. Жанр: Прочее домоводство издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Опыты без взрывов
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
21 октябрь 2019
Количество просмотров:
268
Читать онлайн
Олег Ольгин - Опыты без взрывов

Олег Ольгин - Опыты без взрывов краткое содержание

Олег Ольгин - Опыты без взрывов - описание и краткое содержание, автор Олег Ольгин, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Опыты без взрывов читать онлайн бесплатно

Опыты без взрывов - читать книгу онлайн бесплатно, автор Олег Ольгин

В этом опыте вы воспользовались восстановительными свойствами глюкозы она восстанавливала хром в бихромате аммония. А тот бихромат, который не восстановился, вступил в реакцию с ионами серебра из проявителя, образовал окрашенное соединение,ї которое и осталось на ткани, так как оно нерастворимо.ї И поскольку окраска появилась на неосвещенных участках, вы получили сразу позитивное изображение.

Другой вариант этого способа, тоже с бихроматомї аммония, но уже без глюкозы и, что важнее, без серебра даже в проявителе. Приготовьте эмульсию, состоящую из двух растворов. Первый раствор: 17 г столярного клея и 6 г желатины залейте 100 мл воды, добавьте 3 мл водного раствора аммиака и оставьте для набухания на сутки, а затем нагревайтеї около часа на водяной бане при 80 0С до полного растворения. Второй раствор: по 2,5 г бихромата аммония и хромокалиевых квасцов, 3 мл водного раствора аммиака, 30 мл воды и 6 мл спирта. Когда первый раствор остынет примерно до 50+С, при энергичном перемешивании влейте в него второй раствор и полученную эмульсию дважды профильтруйте (лучше - через вату). Поставьте ее в темное место, и следующую операцию - нанесение эмульсии на металлическую, стеклянную или керамическуюї пластинку - проводите в затемненном помещении.

Подогретую до 30-40+С эмульсию налейте тонкой струйкой на чистую пластинку, покачивав ее, чтобы выровнять слой. Минут десять-пятнадцать посушите пластинку, желательно при небольшом нагревании, и, как и в предыдущем опыте, положите на светочувствительный слой кальку с изображением. Прижмите ее стеклом, чтобы она распрямилась, и осветите. Несколько минут на ярком солнце то, что нужно, а если освещение искусственное, то включите на 10 мин несколько ламп общей мощностью около 2000 Вт, желательно с рефлекторами.

Проявлять надо сразу, иначе хромовые солиї задубят желатину и там, где не надо. Проявитель - чуть теплая, не более 30+С, вода. Незадубленная желатина в ней растворится. А те участки, в которых под действием света белки желатины затвердели, останутся на поверхности.

Изображение получилось не очень четким. Чтобы исправить этот недостаток, опустите отпечаток в 1%-ный раствор индикатора метилового фиолетового (можно взять разбавленные фиолетовые чернила). Промойте пластину в воде и приступайте к закреплению в растворе: 5 г бихромата аммония, 2 гї хромокалиевых квасцов и 4 мл спирта на 100 мл воды; время - три-четыре минуты. Высушите фотографию на воздухе. Для дополнительного закрепления снимка можно нагреть его несколько минут в сушильном шкафу или в духовке.

Следующую бессеребряную фотографию сделаем более привычно - на бумаге. Правда, на фильтровальной; но все равно - этот опыт демонстрационный.

Кружок бумаги опустите в раствор, содержащий по 20 мл 5%-ных растворов красной кровяной соли К3[Fе(СN)6], хлорида железа FeCl3 и щавелевой кислоты Н2СO4 (осторожно!). Пропитанную бумагу извлеките из раствора и высушите в темноте, затем положите кальку с рисунком и засветите солнечным светом. Лампы накаливания для этой цели не годятся, а вот ультрафиолетовая (кварцевая) лампа подойдет. Освещенные места станут темно-синими из-за образования уже знакомой вам турнбулевой сини. Проявления не нужно, а для закрепления промойте бумагу водой, чтобы смыть вещества, неї вступившие в реакцию.

И последний опыт с бессеребряной фотографией. В одном стакане растворите в 100 мл воды по 0,4 г хлорида железа (III) и щавелевой кислоты, в другом - 1,4 г хлорида меди в таком же количестве воды. Смешайте 10 мл первого и 0,6 мл второго раствора, пропитайте смесью фильтровальную бумагу и высушите ее в темноте. Заготовьте проявитель: 3,5 г медного купороса, 17 г сегнетовой соли (двойной натриево-калиевой соли винной кислоты), 5 г едкого натра (осторожно!) на 100 мл воды и смешайте с 25 мл 40%-ного раствора формальдегида. Вновь засветите бумагу на солнечном свете или под ультрафиолетовой лампой через кальку с рисунком; в отличие от предыдущего опыта изображения сперва не видно. Оно появится после 15-минутной выдержки в проявителе и промывки в большом количестве воды.

Этот процесс несколько напоминает серебряную фотографию, поскольку в светочувствительном слое также образуются центры кристаллизации, но не серебра, а меди; однако медь осаждалась не из эмульсии, как в обычной фотографии, а из проявляющего раствора.

ВНИМАНИЕ, СКОРОСТЬ!

В химической науке есть особая область, которая изучает скорости и механизмы различных реакций, - химическая кинетика.

Хотя химическая теория может объяснить многое, предсказать теоретически скорость любой реакции пока нельзя. Ее изучают экспериментально, в лаборатории, и потом разрабатывают способы, как эту скорость изменить. Есть немало реакций, важных для промышленности, которые идут слишком медленно, нужно уметь их ускорять. Другие реакции, напротив, приходится тормозить, потому что они вредны.

Словом, химическая кинетика - экспериментальная наука. В справедливости ее законов можно убедиться, поставив несколько несложных опытов.

Для начала удостоверимся в том, что скорость одной и той же реакции действительно можетї изменяться, и довольно значительно. (Впрочем, это можно предположить на основании не химического, а жизненного опыта; к примеру, продукты на морозе портятся медленнее, чем на жаре, потому что при разных температурах одни и те же биохимические реакции идут с разными скоростями.)

Для проверки повторите опыт из главы "Химические часы", но изменяйте на этот раз не концентрации веществ (это вам уже знакомо), а температуру. Если оба исходных раствора - сульфата натрия и йодата калия с серной кислотой выливать в воду со льдом, то времени до появления синей окраски пройдет заметно больше, чем при использовании теплой воды. Заметьте только, что в очень горячей воде окраска не появляется вовсе, так как окрашенное соединение иода с крахмалом неустойчиво.

Итак, вы выяснили на опыте: чем выше концентрация и температура, тем быстрее идет реакция. Но некоторые реакции на первый взгляд кажутся исключением из правила. Вот пример.

Налейте в пробирку на высоту 1-2 см уксусной кислоты и бросьте в нее несколько кусочков цинка. Цинк надо предварительно очистить, погрузив его секунд на двадцать в раствор соляной кислоты и промыв водой,

Уксусная кислота слабая, и цинк растворяется в ней очень медленно пузырьки водорода еле выделяются. Как ускорить реакцию? Нагреть раствор. Правильно. А нельзя ли иначе? Поступим так: понемногу станем добавлять в пробирку чистую воду, каждый раз хорошо перемешивая. Внимательно последите за пузырьками. Удивительное дело: кислота уже разбавлена вдвое, втрое, а реакция вместо того чтобы замедляться, идет все быстрее!

Если вы ставите этот опыт на занятиях кружка, то замените цинк маленьким кусочком магниевой стружки и ничем ее не обрабатывайте. С разбавленной уксусной кислотой магний реагирует еще энергичнее, чем цинк.

Такое "исключение" из правила становится понятным, если его хорошо изучить. Наш опыт с уксусной кислотой объясняется следующим образом. Скорость, с которой цинк или магний взаимодействуют с кислотой, зависит от концентрации ионов водорода в растворе. Эти ионы образуются при растворении в воде любой кислоты. Но когда воды мало, слабая уксусная кислота находится в растворе почти исключительно в виде недиссоциированных молекул. По мере разбавления водой все больше молекул уксусной кислоты распадается на ионы, и реакция идет быстрее. Но если добавить слишком много воды, то реакция вновь замедлится, уже по другой причине: из-за сильного разбавления концентрация ионов водорода опять уменьшится. Быстрее всего реагирует с цинком 15%-ная уксусная кислота.

Конечно, мы разобрали этот опыт отнюдь не ради того, чтобы просто показать, какими необычными бывают химические превращения. Мы хотели обратить ваше внимание вот на что: для управления скоростью реакции обязательно надо знать, как она идет.

Всякая реакция начинается с того, что молекулы веществ сталкиваются друг с другом. Посмотрим, как начинается реакция.

Возьмите не очень широкую стеклянную трубку длиной в несколько десятков сантиметров и подберите к ней две пробки, С внутренней стороны, обращенной к трубке, вставьте в обе пробки по небольшому стеклянному стерженьку и намотайте на них по кусочку ваты. Один кусочек смочите несколькими каплями концентрированной соляной кислоты, другой - концентрированным раствором аммиака. Одновременно вставьте пробки с ватками в трубку с обеих концов. Через несколько минут - в зависимости от длины трубки - в ней, ближе к ватке с соляной кислотой, появится белое кольцо хлорида аммония NH4Cl.

Обычно при химических реакциях смесь перемешивают, чтобы процесс шел быстрее. Мы умышленно этого не сделали и не пытались даже помочь молекулам встретиться - они двигались сами. Такое самостоятельное передвижение молекул в той пли иной среде называют диффузией. Испаряясь с ваты, молекулы обоих веществ испытывали миллиарды столкновений в секунду с молекулами воздуха и друг с другом. И хотя скорость молекул очень велика, она исчисляется сотнями метров в секунду, при 0+С и нормальном давлении свободный пробег, т. е. расстояние, которое успевает пройти молекула от одного столкновения до другого, составляет для этих веществ всего около 0,0001 мм. Поэтому-то аммиак и хлористый водород (из соляной кислоты) так медленно двигались в трубке. Столь же медленно распространяется по комнате с неподвижным воздухом пахучее вещество.


Олег Ольгин читать все книги автора по порядку

Олег Ольгин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Опыты без взрывов отзывы

Отзывы читателей о книге Опыты без взрывов, автор: Олег Ольгин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.