Когда ваш глаз имеет форму кубка, то почти любой, минимально выпуклый, как-то прозрачный, или даже полупрозрачный, материал, закрывающий его горлышко, привнесёт улучшение — благодаря небольшой способности фокусировать свет. Он собирает свет по всей своей площади и концентрирует его на меньшей площади сетчатки. И как только такой примитивный прото-хрусталик возник — так появился непрерывно возрастающий ряд улучшений, в ходе которых хрусталик утолщается, делается прозрачнее, вносит меньше искажений — и эта тенденция достигает высшей точки в том, что все мы называем настоящим хрусталиком. Родственники наутилуса, кальмары и осьминоги, обладают настоящим хрусталиком, очень похожим на наш, хотя их прародители развили принципиально тот же вид глаза полностью независимо от наших. Кстати, Майкл Лэнд насчитывает девять основных принципов формирования изображения, которые используются в глазах, и большая их часть независимо развивалась много раз. Например, принцип объектива-рефлектора радикально отличается от нашего глаза-рефрактора (мы используем принцип рефлектора в радиотелескопах, а также в наших самых крупных оптических телескопах, потому что легче сделать большое зеркало, чем большую линзу), и он был независимо «изобретён» некоторыми моллюсками и ракообразными. Другие ракообразные имеют фасеточный глаз, как у насекомых (в самом деле — это батарея из большого количества крошечных глазков), а другие моллюски, как мы видели, обладают линзовым глазом (как у нас) или глазом-обскурой. У каждого из этих типов глаз существовали различные эволюционные стадии, которым (стадиям) соответствуют работающие глаза каких-то других, ныне здравствующих современных животных.
Анти-эволюционная пропаганда полна предполагаемыми примерами сложных систем, которые «вряд ли могли» развиться как постепенный ряд промежуточных звеньев. Часто это только другой случай довольно патетического «аргумента субъективного неверия», с которым мы встретились в главе 2. Например, сразу после раздела про глаз, «Шея жирафа» переходит к обсуждению жука — «бомбардира трескучего», который…
Впрыскивает струю смертельной смеси гидрохинона и перекиси водорода в лицо своему врагу. Эти две химикалии, смешанные вместе, буквально взрываются. Поэтому, чтобы хранить их внутри своего тела, жук-бомбардир выработал химический ингибитор, делающий их смесь безопасной. В момент, когда жук выпрыскивает жидкость на своего врага, он добавляет анти-ингибитор, чтобы снова придать смеси взрывчатые свойства. Цепь событий, которые могли бы привести к развитию такого сложного, скоординированного и тонкого процесса — вне биологического объяснения на базисе простых пошаговых преобразований. Самый небольшой сдвиг в химическом балансе немедленно бы привел к породе взорванных жуков.
Коллеги-биохимики любезно снабдили меня бутылочкой перекиси водорода и достаточным количеством гидрохинона — его бы хватило для заправки 50 жуков-бомбардиров. Вот-вот я смешаю их вместе. Согласно вышеизложенному, они взорвутся мне в лицо. Приступаю…
Спокойно, я всё ещё здесь. Я вливал перекись водорода в гидрохинон, и абсолютно ничто не случалось. Смесь даже не нагрелась! Конечно же, я знал, что так и будет — я не настолько безрассуден! Утверждение, что «эти две химикалии, смешанные вместе, буквально взрываются», просто-напросто ложно, хотя регулярно повторяется во всей креационистской литературе. Если же вам интересно, что делает жук-бомбардир, то фактически происходит следующее. Верно, что он прыскает едкую и горячую смесь перекиси водорода и гидрохинона на врага. Но перекись водорода и гидрохинон не вступают в бурную реакцию, пока не добавлен катализатор. Именно это и проделывает жук-бомбардир. Что касается эволюционных предшественников этой системы, то и перекись водорода, и различные виды хинонов широко используются для других целей в обмене веществ живого тела. Предки жука-бомбардира просто заставили уже имеющиеся химикалии делать и другую работу. Эволюция так делает часто.
На той же странице книги Хичинга, вмести с пассажем про жука-бомбардира, имеется вопрос: «какая польза могла бы быть от половины легкого? Естественный отбор, конечно, устранил бы существа с причудами, которые не способствуют их выживанию». У здорового взрослого человека, каждое из двух его лёгких разделено на примерно 300 миллионов крошечных камер на кончиках разветвлённой системы трубок. Архитектура этих трубок похожа на дерево-биоморф в нижней части рисунка 2 предыдущей главы. В упомянутом дереве количество последовательных ветвлений, определяемых «геном 9», составляет восемь, а количество кончиков веток — 2 в степени 8, то есть 256. По мере вашего спуска по рисунку 2, количество кончиков веточек последовательно удваивается. Чтобы породить 300 миллионов кончиков веток, нужно только 29 последовательных ветвлений надвое. Обратите внимание, что имеется непрерывный ряд от единственной камеры к 300 миллионам крошечных камер, каждый шаг этого ряда, обеспечивается новым двухветочным ветвлением. Этот переход может быть выполнен за 29 ветвлений, которые мы можем простодушно представить величавой прогулкой из 29 шагов в генетическом гиперпространстве.
Результат всей этой разветвлённости состоит в том, что площадь газообменной поверхности каждого лёгкого оказывается больше 60 квадратных метров. Площадь — важный параметр лёгкого, поскольку она определяет скорость поглощения кислорода и выделения ненужного углекислого газа. Особенность площади состоит в том, что она является непрерывной (не дискретной) переменной. Площадь — не такая вещь, которой вы или обладаете, или нет. Это такая вещь, которой вы можете обладать в большем или меньшем количестве. Более, чем большинство других параметров, площадь лёгкого доступна для постепенных, пошаговых изменений, от 0 квадратных метров, до 60 квадратных метров. У многих людей одно лёгкое удаляется хирургическим путём, а у некоторых от нормальной площади лёгкого осталась всего треть. Они могут ходить, разве что не очень далеко или не очень быстро. В этом вся суть. Влияние постепенно сокращения площади лёгкого на выживание не дискретно, это не эффект «всё или ничего». Это влияние плавно меняет ваши возможности ходить на далёкие расстояния или возможную для вас скорость перемещения. Этот постепенный, плавно изменяющийся эффект действительно меняет вероятную продолжительность вашей жизни. Смерть не наступает скачкообразно при снижении площади лёгкого ниже конкретного порогового значения! Хотя она постепенно становится более вероятной при снижении этой площади ниже оптимума (и не увеличивается при превышении этого оптимума — по различным причинам, связанным с экономическими издержками).
Первые из наших прародителей, начинающие развивать лёгкие, почти наверняка жили в воде. Мы можем получить представление о том, как они могли бы дышать, поглядев на современную рыбу. Большинство современных рыба дышит в воде жабрами, но многие виды, живущие в грязных, болотистых водоёмах, делают это, глотая воздух с поверхности. Они используют внутреннюю полость рта, как своего рода примитивное протолёгкое, и эта полость иногда возрастает до дыхательного кармана, богатого кровеносными сосудами. Мы видели, что нет никаких проблем в представлении непрерывного ряда Xs, связывающего единственную полость и множество разветвлений на 300 миллионов полостей современного человеческого лёгкого.
Интересно, многие современные рыбы сохранили это полость как единый объём, но используют его для совершенно другой цели. Хотя он вероятнее всего начался как примитивное лёгкое, но в ходе эволюции стал плавательным пузырём — изобретательным устройством, посредством которого рыба поддерживает себя в постоянном гидростатическом равновесии. Животное без воздушных полостей обычно чуть тяжелее воды и погружается на дно. Именно поэтому акулам приходится непрерывно двигаться, чтобы остановить своё погружение. Животное с большими воздушными полостями внутри — как мы с нашими большими лёгкими, склонны подниматься к поверхности. Где-то в середине этого континуума, животное с воздушным пузырем строго правильного размера ни погружается, ни всплывает, а стабильно плавает в равновесии, не прилагая усилий. Современный рыбы (иные, чем акулы) усовершенствовали этот приём. В отличие от акул, они не расходуют энергию на предотвращение своего погружения. Их хвост и плавники свободны для управления и быстрого толчка. Для наполнения пузыря они больше не полагаются на внешний воздух, а используют специальные железы для выработки газа. Используя эти железы и другие средства, они точно регулируют объем газа в пузыре и, тем самым, поддерживают себя в точном гидростатическом равновесии.
Несколько видов современных рыб могут покидать воду. Крайний случай — индийский анабас (рыба-ползун), который почти не заходит в воду. Он независимо развил лёгкие, весьма отличные от таковых у наших прародителей — у него они представляют собой воздушную камеру, окружающую жабры. Другие рыбы, живя в основном в воде, делают краткие набеги из неё. Вероятно, что наши предки именно так и делали. Особенность таких набегов состоит в том, что их продолжительность может плавно меняться — от нуля, до неограниченного пребывания вне воды. Если вы — рыба, живущая в основном в воде и дышащая там, но при случае отваживающаяся выходить на сушу, возможно, чтобы перебраться из одной грязной лужи до другой и, таким образом, пережить засуху, то вы могли бы извлечь выгоду не только из половины легкого, но и от одной сотой лёгкого. Не имеет значения, насколько мало ваше изначальное лёгкое, но с лёгким вы выдержите несколько большее время вне воды, чем без него. Время — тоже непрерывная переменная. Не существует никакой качественной границы между животными, дышащими в воде и в воздухе. Разные животные могут проводить в воде 99 процентов своего времени, другие — 98, далее 97, и так до 0 процентов. На каждом шаге этого пути, какое-то незначительное увеличение площади лёгкого даст преимущества. И на всём пути имеет место непрерывность и градуализм.