Если обратиться к соматосенсорной коре, то здесь сложность топографического отображения может доходить до крайней степени. Например, область коры, соответствующая коже руки, по конфигурации должна быть похожа на перчатку, причем с определенными искажениями, чтобы обеспечить бо́льшую чувствительность кончиков пальцев по сравнению с ладонью и тыльной стороной кисти. Такое искажение аналогично увеличению корковой проекции центральной ямки по сравнению с периферией сетчатки в соответствии с различием в остроте зрения. Будет ли корковая проекция руки действительно напоминать перчатку, если мы сделаем резиновую модель и будем ее постепенно раздувать, чтобы расправить искусственные складки? Вероятно, нет. Картирование соматосенсорной коры оказалось чрезвычайно сложной задачей. Результаты, полученные до сих пор, позволяют думать, что форма непрерывной проекции была бы слишком причудливой; на самом деле соматосенсорная кора как будто ножницами разрезана на множество небольших, более «удобных» участков, которые соединены наподобие кусков лоскутного одеяла так, что получается некоторое приближение к плоской поверхности.
7. Мозолистое тело и стереоскопическое зрение
Мозолистое тело представляет собой мощный пучок миелинизированных волокон, соединяющих два полушария мозга. Стереоскопическое зрение (стереопсис) — это способность воспринимать глубину пространства и оценивать удаленность предметов от глаз. Эти две вещи не особенно тесно связаны друг с другом, однако известно, что небольшая часть волокон мозолистого тела все же играет некоторую роль в стереопсисе. Оказалось удобным включить обе эти темы в одну главу, так как при их рассмотрении придется учитывать одну и ту же особенность устройства зрительной системы, а именно то, что в хиазме имеются как перекрещенные, так и неперекрещенные волокна зрительного нерва (см. рис. 35).
Мозолистое тело
Мозолистое тело (по-латыни corpus callosum) — это самый крупный пучок нервных волокон во всей нервной системе. По приближенной оценке в нем насчитывается около 200 млн. аксонов. Истинное число волокон, вероятно, еще больше, так как приведенная оценка основана на данных обычной световой, а не электронной микроскопии. Это число несравнимо с числом волокон в каждом зрительном нерве (1,5 млн.) и в слуховом нерве (32 000). Площадь поперечного сечения мозолистого тела составляет около 700 мм2, тогда как у зрительного нерва она не превышает нескольких квадратных миллиметров. Мозолистое тело вместе с тонким пучком волокон, называемым передней комиссурой, соединяет два полушария мозга (рис. 98 и 99). Термин комиссура означает совокупность волокон, соединяющих две гомологичные нервные структуры, расположенные в левой и правой половинах головного или спинного мозга. Мозолистое тело тоже иногда называют большой комиссурой мозга.
Рис. 97. На этой стереопаре изображена галерея в Новом колледже в Оксфорде. После того как была сделана сдвинули на 7,5 см влево и сделали левую фотографию.
Рис. 98. Головной мозг человека в разрезе, проходящем по срединной плоскости. Виден толстый, дугообразный в поперечном сечении пучок аксонов — мозолистое тело.
Рис. 99. Здесь мозг показан сверху. Часть правого полушария срезана, и виден пучок волокон мозолистого тела, соединяющий все участки двух полушарий.
Примерно до 1950 года роль мозолистого тела была совершенно неизвестна. В редких случаях наблюдается врожденное отсутствие (аплазия) мозолистого тела. Это образование может также быть частично или полностью перерезано во время нейрохирургической операции, что делается намеренно — в одних случаях при лечении эпилепсии (чтобы судорожный разряд, возникающий в одном полушарии мозга, не мог распространиться на другое полушарие), в других случаях для того, чтобы добраться сверху до глубоко расположенной опухоли (если, например, опухоль находится в гипофизе). По наблюдениям невропатологов и психиатров, после такого рода операций не возникает никаких расстройств психики. Кто-то даже высказал мысль (хотя вряд ли всерьез), что единственная функция мозолистого тела состоит в том, чтобы удерживать два полушария мозга вместе. Вплоть до 1950-х годов мало что было известно о деталях распределения связей в мозолистом теле. Очевидно было, что мозолистое тело соединяет два полушария, и на основании данных, полученных довольно грубыми нейрофизиологическими методами, считали, что в стриарной коре волокна мозолистого тела связывают в точности симметричные участки двух полушарий.
В 1955 году Рональд Майерс, аспирант психолога Роджера Сперри из Чикагского университета, впервые провел эксперимент, в котором удалось выявить некоторые функции этого огромного волокнистого тракта. Майерс занимался обучением кошек, помещенных в ящик с двумя поставленными рядом экранами, на которые можно было проецировать различные изображения, например круг на один экран и квадрат — на другой. Кошку обучали упираться носом в тот экран, на котором было изображение круга, и игнорировать другой — с изображением квадрата. Правильные ответы подкреплялись пищей, а за ошибочные ответы кошек слегка наказывали — включался громкий звонок, и кошку не грубо, но решительно оттаскивали от экрана. Таким методом за несколько тысяч повторений кошку удается довести до уровня надежного различения фигур. (Кошки обучаются медленно; например, голубям для обучения в аналогичной задаче требуется от нескольких десятков до нескольких сотен повторений, а человека вообще можно научить сразу, дав ему словесную инструкцию. Такая разница кажется несколько странной — ведь у кошки головной мозг во много раз больше, чем у голубя.)
Нет ничего удивительного в том, что кошки Майерса научались ничем не хуже решать эту задачу и в том случае, когда один глаз животного был закрыт маской. Неудивительно и то, что если обучение такой задаче, как выбор треугольника или квадрата, проводилось лишь с одним открытым глазом — левым, а при проверке левый глаз закрывали и открывали правый, то точность различения оставалась прежней. Нас это не удивляет потому, что мы сами легко можем решить аналогичную задачу. Легкость решения подобных задач понятна, если учесть анатомию зрительной системы. Каждое полушарие получает входные сигналы от обоих глаз. Как мы уже говорили в главе 4, большая часть клеток в поле 17 тоже имеет входы от обоих глаз. Майерс создал более интересную ситуацию, произведя продольную перерезку хиазмы по средней линии. Таким образом, он перерезал перекрещивающиеся волокна и сохранил в целости неперекрещивающиеся (эта операция требует от хирурга определенного навыка). В результате такой перерезки левый глаз животного оказался соединен только с левым полушарием, а правый — только с правым. Идея эксперимента заключалась в том, чтобы обучать кошку, используя левый глаз, а на «экзамене» адресовать стимул правому глазу. Если кошка сможет правильно решать задачу, то это будет означать, что необходимая информация передается из левого полушария в правое по единственному известному пути — через мозолистое тело. Итак, Майерс произвел продольную перерезку хиазмы, обучил кошку с одним открытым глазом, а затем устроил проверку, открыв другой глаз и закрыв первый. В этих условиях кошки по-прежнему успешно решали задачу. Наконец, Майерс повторил эксперимент на животных, у которых предварительно были перерезаны и хиазма, и мозолистое тело. На этот раз кошки задачу не решили. Таким образом, Майерс опытным путем установил, что мозолистое тело действительно выполняет какие-то функции (хотя вряд ли можно было думать, что оно существует только для того, чтобы отдельные люди или животные с перерезанной зрительной хиазмой могли решать определенные задачи с использованием одного глаза после обучения с использованием другого).
Изучение физиологии мозолистого тела
Одно из первых нейрофизиологических исследований в этой области было проведено спустя несколько лет после экспериментов Майерса Д. Уиттериджем, работавшим тогда в Эдинбурге. Уиттеридж рассудил, что нет особого смысла в том, чтобы пучки нервных волокон соединяли гомологичные зеркально-симметричные участки полей 17. Действительно, не видно никаких причин для того, чтобы нервная клетка в левом полушарии, связанная с какими-то точками в правой половине поля зрения, соединялась с клеткой в правом полушарии, связанной с симметричным участком левой половины поля зрения. Для проверки своих предположений Уиттеридж перере́зал зрительный тракт на правой стороне мозга позади хиазмы и тем самым перекрыл входным сигналам путь в правую затылочную долю; но это, конечно, не исключало передачу туда сигналов из левой затылочной доли через мозолистое тело (рис. 100). Затем Уиттеридж стал включать световой стимул и регистрировать металлическим электродом электрическую активность с поверхности коры. Он действительно получил в своем опыте ответы, однако они возникали только на внутренней границе поля 17, т.е. в зоне, получающей входные сигналы от длинной, узкой вертикальной полоски в середине поля зрения: при стимуляции маленькими пятнышками света ответы появлялись только тогда, когда свет вспыхивал на вертикальной средней линии или поблизости от нее. Если кору противоположного полушария охлаждали, тем самым временно подавляя ее функцию, ответы прекращались; к этому же приводило и охлаждение мозолистого тела. Тогда стало ясно, что мозолистое тело не может связывать всё поле 17 левого полушария со всем полем 17 правого полушария, а связывает только небольшие участки этих полей, где находятся проекции вертикальной линии в середине поля зрения.