Каждая область коры соединяется с несколькими или даже многими другими областями коры того же полушария. Например, первичная зрительная кора связана с полем 18 (зрительной зоной 2), с медиальной височной областью (зоной MT), со зрительной зоной 4 и еще с одной или двумя областями. Многие участки коры имеют также связи с несколькими областями другого полушария, осуществляемые через мозолистое тело, а в некоторых случаях — через переднюю комиссуру. Поэтому мы можем рассматривать эти комиссуральные связи просто как особый вид кортико-кортикальных связей. Легко сообразить, что об этом свидетельствует такой простой пример: если я говорю вам, что моя левая рука ощущает холод или что я увидел что-то слева, то я формулирую слова, используя свои корковые речевые зоны, находящиеся в левом полушарии (сказанное, может быть, и не совсем верно, поскольку я левша); информация, поступающая от левой половины поля зрения или от левой руки, передается в мое правое полушарие; потом соответствующие сигналы должны быть переданы через мозолистое тело в речевую зону коры другого полушария, чтобы я мог сказать что-нибудь о своих ощущениях. В серии работ, начатых в начале 1960-х годов, Р. Сперри (сейчас он работает в Калифорнийском технологическом институте) и его сотрудники показали, что человек с перерезанным мозолистым телом (для лечения эпилепсии) теряет способность рассказывать о тех событиях, информация о которых попадает в правое полушарие. Работа с такими испытуемыми стала ценным источником новых сведений о различных функциях коры, включая мышление и сознание. Первые статьи об этом появились в журнале Brain; они чрезвычайно интересны, и их сможет без труда понять всякий, кто прочел настоящую книгу.
Стереоскопическое зрение
Механизм оценки удаленности, основанный на сравнении двух сетчаточных изображений, настолько надежен, что многие люди (если они не психологи и не специалисты по физиологии зрения) даже не подозревают о его существовании. Для того чтобы убедиться в важности этого механизма, попробуйте в течение нескольких минут вести автомобиль или велосипед, играть в теннис или прокатиться на лыжах, закрыв один глаз. Стереоскопы вышли из моды, и вы можете найти их только в антикварных магазинах. Однако большинство читателей смотрели стереоскопические фильмы (когда зрителю приходится надевать специальные очки). Принцип действия как стереоскопа, так и стереоскопических очков основан на использовании механизма стереопсиса.
Изображения на сетчатках двумерны, а между тем мы видим мир трехмерным. Очевидно, что как для человека, так и для животных важна способность определять расстояние до объектов. Точно так же восприятие трехмерной формы предметов означает оценку относительной глубины. Рассмотрим в качестве простого примера круглый предмет. Если он расположен наклонно по отношению к линии взора, его изображение на сетчатках будет эллиптическим, однако обычно мы без труда воспринимаем такой предмет как круглый. Для этого необходима способность к восприятию глубины.
Человек обладает многими механизмами оценки глубины. Некоторые из них столь очевидны, что вряд ли заслуживают упоминания. Тем не менее я их упомяну. Если приблизительно известна величина объекта, например в случае таких объектов, как человек, дерево или кошка, то можно оценить расстояние до него (правда, есть риск ошибиться, если мы столкнемся с карликом, карликовым деревом или львом). Если один предмет расположен впереди другого и частично его заслоняет, то мы воспринимаем передний объект как расположенный ближе. Если взять проекцию параллельных линий, например железнодорожных рельсов, уходящих вдаль, то в проекции они будут сближаться. Это пример перспективы — весьма эффективного показателя глубины. Выпуклый участок стены кажется более светлым в верхней своей части, если источник света расположен выше (обычно источники света и находятся вверху), а углубление в ее поверхности, если оно освещается сверху, кажется в верхней части более темным. Если же источник света поместить внизу, то выпуклость будет выглядеть как углубление, а углубление — как выпуклость. Важным признаком удаленности служит параллакс движения — кажущееся относительное смещение близких и более далеких предметов, если наблюдатель будет двигать головой влево и вправо или вверх и вниз. Если какой-то твердый предмет поворачивается, пусть даже на небольшой угол, то сразу же выявляется его трехмерная форма. Если мы фокусируем хрусталик нашего глаза на близко расположенном предмете, то более удаленный предмет будет не в фокусе; таким образом, меняя форму хрусталика, т.е. изменяя аккомодацию глаза (см. гл. 2 и 6), мы получаем возможность оценивать удаленность предметов. Если изменять относительное направление осей обоих глаз, сводя их или разводя (осуществляя конвергенцию или дивергенцию), то можно свести вместе два изображения предмета и удерживать их в этом положении. Таким образом, управляя либо хрусталиком, либо положением глаз, можно оценить удаленность объекта. На этих принципах основаны конструкции ряда дальномеров. За исключением конвергенции и дивергенции, все остальные показатели удаленности, перечисленные до сих пор, являются монокулярными. Наиболее важный механизм восприятия глубины — стереопсис — зависит от совместного использования двух глаз. При рассматривании любой трехмерной сцены два глаза формируют несколько различные изображения на сетчатке. Вы легко можете в этом убедиться, если будете смотреть прямо вперед и быстро перемещать голову из стороны в сторону примерно на 10 см или же быстро закрывать поочередно то один, то другой глаз. Если перед вами плоский объект, вы не заметите особой разницы. Однако, если сцена включает предметы на разном расстоянии от вас, вы заметите существенные изменения в картине. В процессе стереопсиса мозг сравнивает изображения одной и той же сцены на двух сетчатках и с большой точностью оценивает относительную глубину.
Предположим, наблюдатель фиксирует взором некоторую точку P. Это утверждение эквивалентно тому, как если мы скажем: глаза направляются таким образом, чтобы изображения точки оказались в центральных ямках обоих глаз (F на рис. 103). Предположим теперь, что Q — это другая точка пространства, которая кажется наблюдателю расположенной на такой же глубине, что и P. Пусть QL и QR — изображения точки Q на сетчатках левого и правого глаза. В этом случае точки QL и QR называют корреспондирующими точками двух сетчаток. Очевидно, что две точки, совпадающие с центральными ямками сетчаток, будут корреспондирующими. Из геометрических соображений ясно также, что точка Q', оцениваемая наблюдателем как расположенная ближе, чем Q, будет давать на сетчатках две проекции — Q'L и Q'R — в некорреспондирующих точках, расположенных дальше друг от друга, чем в том случае, если бы эти точки были корреспондирующими (эта ситуация изображена в правой части рисунка). Точно так же, если рассматривать точку, расположенную дальше от наблюдателя, то окажется, что ее проекции на сетчатках будут расположены ближе друг к другу, чем корреспондирующие точки. То, что сказано выше о корреспондирующих точках, — это частично определения, а частично утверждения, вытекающие из геометрических соображений. При рассмотрении этого вопроса учитывается также психофизиология восприятия, поскольку наблюдатель субъективно оценивает, дальше или ближе точки P расположен объект. Введем еще одно определение. Все точки, которые, подобно точке Q (и, конечно, точке P), воспринимаются как равноудаленные, лежат на гороптере — поверхности, проходящей через точки P и Q, форма которой отличается как от плоскости, так и от сферы и зависит от нашей способности оценивать удаленность, т.е. от нашего мозга. Расстояния от центральной ямки F до проекций точки Q (QL и QR) близки, но не равны. Если бы они всегда были равны, то линия пересечения гороптера с горизонтальной плоскостью представляла бы собой круг.
Рис. 103. Слева: если наблюдатель смотрит на точку P, то два ее изображения (проекции) попадают на центральные ямки двух глаз (точки F). Q — точка, которая, по оценке наблюдателя, находится на таком же расстоянии от него, что и P. В этом случае говорят, что две проекции точки Q (QL и QR) попадают в корреспондирующие точки сетчаток. (Поверхность, составленную из всех точек Q, которые кажутся находящимися на одинаковом расстоянии от наблюдателя, таком же, как точка P, называют гороптером, проходящим через точку P). Справа: если точка Q' находится ближе к наблюдателю, чем Q, то ее проекции на сетчатках (Q'L и Q'R) будут отстоять друг от друга по горизонтали дальше, чем если бы они находились в корреспондирующих точках. Если бы точка Q' находилась дальше, то проекции Q'L и Q'R оказались бы сдвинутыми по горизонтали ближе друг к другу.