Разработаны и испытаны бомбы термоядерного синтеза с потенциалом разрушения в тысячи раз большим, чем у первых бомб расщепления. Одна большая бомба термоядерного синтеза может полностью разрушить самый крупный город мира, а если взорвать все имеющиеся сейчас бомбы термоядерного синтеза, то взрывная волна, пожары и радиоактивные осадки уничтожат все живое на земле.
Однако термоядерный синтез можно (и должно!) использовать не для разрушения. Одной из наиболее важных экспериментальных работ, проводимых в настоящее время, является попытка получить чрезвычайно высокие температуры, в сотни миллионов градусов, управляемым способом (а не в центре взрывающейся бомбы расщепления) и поддерживать эти температуры достаточно долго, с тем чтобы началась реакция термоядерного синтеза [135].
Управляя скоростью такой реакции, можно создать фантастические запасы энергии. В качестве топлива пригоден дейтерий, или тяжелый водород, который в огромных количествах (вполне достаточных на миллионы лет) имеется в воде океанов.
Никогда раньше человечеству не грозило так реально полное уничтожение, но и никогда раньше человечество не могло рассчитывать на то процветание, которое возможно в случае отказа от применения термоядерного оружия. Но судьба человечества не может зависеть от прогресса только одной из областей науки.
Мы приобретаем знания. Эти знания дает нам наука.
Теперь мы должны быть еще и мудрыми!
[1] А. Азимов связывает накопление химических знаний прежде всего с появлением и развитием металлургии. Однако ремесленная химия древности была гораздо шире. Параллельно с металлургией развивалась техника изготовления красок (минеральных и растительных) и крашения, изготовления стекла и керамики. Наряду с металлургией важной основой дальнейшего развития экспериментальной химии была фармация.
[2] Самые древние изделия из меди насчитывают 9200—8750 лет до н. э. Они найдены в неолитических поселениях в верховьях р. Тигр. Изделия из меди, найденные на территории нынешней Турции, датируются 6400—5700 гг. до н. э.
[3] Железо земного (не метеоритного) происхождения было известно народам Южного Кавказа уже в 2100 г. до н. э.
[4] О процессе формирования представлений об «элементах-стихиях» см.: Ахутин А. В. Мифологические истоки учения об элементах. В кн.: Всеобщая история химии. Возникновение и развитие химии с древнейших времен до XVII в.— М.: Наука, 1980, с. 74—91.
[5] «Элемент» — латинское слово неизвестного происхождения. Греки не употребляли его, но, поскольку это одно из важнейших понятий современной химии, обойтись без него невозможно, даже в тех случаях, когда речь идет о греках.
[6] Очень важным для формирования качественно-химических представлений о веществе было введенное последователем Фалеса Анаксимандром (ок. 610— 546 гг. до н. э.) понятие άπειρον — первоначало, порождающее бесконечное многообразие всего сущего с различными качествами.
[7] На первый (и не очень внимательный) взгляд эти рассуждения представляются очень наивными. Но подумав немного, мы оценим, насколько глубоки были в действительности догадки древних греков. Заменим воздух, воду, землю и огонь на газ, жидкость, твердое вещество и энергию. Как известно, при охлаждении и сжатии газы сжижаются — образуют жидкости, которые при охлаждении и сжатии в свою очередь образуют твердые вещества. Разве представления Анаксимена противоречат такой схеме? А разве представления Гераклита об огне не похожи на современные представления об энергии, инициирующей химические реакции и выделяющейся при протекании химических реакций?
[8] Интересно, что Лукреций ни разу не употребил в своей поэме слова «атом», но использовал более десятка синонимов. Некоторые из них («корпускула», «элемент») позднее получили распространение в языке науки, но в ином смысле.
[9] По материалам этой главы см.: Всеобщая история химии. Возникновение и развитие химии с древнейших времен до XVII в.— М.: Наука, 1980, 399 с. (Часть первая. Истоки химических знаний); Колчин В. А. Черная металлургия и металлообработка в Древней Руси.— М.: Изд-во АН СССР, 1953; Лукас А. Материалы и ремесленные производства Древнего Египта.— М.: ИЛ, 1958, 747 с.
[10] И в Древнем Риме, и позднее в Византийском государстве накопление химических знаний продолжалось благодаря развитию фармации. Так, «Геопоника», компиляция из 20 книг, приписываемая Кассину Бассу (VII в.), содержала массу практических рецептов и мистические толкования химических процессов.
[11] Несторианин Иов Эдесский много сделал для распространения эллинистических химических воззрений в арабской науке и остался в ее истории под именем Айюба аль-Рухави (ок. 769—835).
[12] Проникновение алхимических учений в Европу шло тремя путями: через Византию (самый ранний путь, но быстро утративший значение), через Сирию, Египет и Сицилию (оказавший влияние на развитие науки в Южной Италии) и через Пиренейский полуостров благодаря арабской культуре Магриба (см.: Мец А. Мусульманский Ренессанс.— М.: Наука, 1966, 437 с). Однако химические знания накапливались и в других регионах: Китае, Средней Азии и на Кавказе. Не последнюю роль при этом играла фармация. Примером могут служить труды армянского врача XII в. Мхитара Гераци (см.: Мхитар Гераци. Утешение при лихорадках.— Ереван, Айастан, 1968, 244 с).
[13] Приписывая Р. Бэкону убеждение, что «залогом прогресса является экспериментальная работа», А. Азимов не указывает, что «опыт» по Бэкону не только эксперимент в современном смысле, но и мистическое «озарение».
[14] Это очень упрощенное объяснение сложного исторического процесса, начавшегося в X в. и продолжавшегося до XVI в. и получившего название второй промышленной революции. Он начался с усовершенствования землепашества, создания новых типов упряжи и плугов. Затем последовало создание водяных и ветряных мельниц, мощность которых уже достигала в XI-XII вв. 40—60 лошадиных сил. Этот прирост мощности дал толчок развитию металлурги». В XIII в. мехи для печей стали приводить в действие водой, в результате температура в плавильной печи превысила 1500°С, что позволило получать чугун. Развились ткачество и сукноделие. В середине XV в. был изобретен печатный станок. Было создано множество гидротехнических сооружений. В строительстве вместо монолитных римских конструкций начали применять новые более легкие конструкции. Весь комплекс этих факторов привел к грандиозным социальным переменам и гибели феодализма.
[15] Шухардин С. В. Георгий Агрикола.— М.: Изд-во АН СССР, 1955.
[16] Агрикола Г. О горном деле и металлургии. Под ред. С. В. Шухардина.— М.: Изд-во АН СССР, 1962.
[17] Интересно, что единственный перевод на английский язык работы Агриколы, опубликованный в 1912 г., с иллюстрациями из оригинала был сделан Гербертом Гувером — бывшим президентом США (по профессии горным инженером) и его женой.
[18] Парацельс положил начало важному направлению в химии, получившему название иатрохимии (от греческого ιατρόδ — врач). Иатрохимия сыграла важную роль в борьбе с догмами средневековой схоластической медицины. В развитие химических представлений иатрохимики также вносили далеко не только одну мистику. Иатрохимия не только пыталась подвести химическое основание под теорию гуморальной патологии, но и содействовала эмпирическому прогрессу химии. Иатрохимики ввели представления о кислотности и щелочности, открыли много новых соединений, начали ставить первые воспроизводимые (хотя далеко не всегда методологически правильные) эксперименты. К числу иатрохимиков принадлежали Я. Б. Ван Гельмонт, Франциск Сильвия, Анджело Сала и Андрей Либавий, которого А. Азимов ошибочно причисляет к алхимикам. Иатрохимия в определенной мере облегчила развитие технической химии Возрождения, приняв на себя тормозящие химическую мысль традиции мистического теоретизирования, использования не доступного непосвященным языка и т. п. Техническая химия начала беспрепятственно накапливать и описывать эмпирический материал.
[19] Наиболее всеобъемлющими трудами по истории алхимии являются следующие: LippmannE. О. Entstehung und Ausbreitung der Alchemie. Berlin, Springer, 1919; RuskaJ. Arabische Alchemisten. 2 Bd. Heidelberg, Winter, 1924. Подробные сведения о Парацельсе и других иатрохимиках можно найти в наиболее документированной истории химии: PartingtonJ. R. A History of Chemistry. Vol. II, London, Macmillan, 1959, а также в кн.: Sudhoff К. Paracelsus, ein deutsches Lebensbild aus der Renaissancezeit. Leipzig, Bibliogr. Inst., 1936; Pagel W. Paracelsus. An Introduction to Philosophical Medicine in the Era of the Renaissance. Basel. Karger, 1958. О технической химии см.: Фестер Г. История химической техники. Пер. с нем. / Под ред. М. А. Блоха с вводной статьей А. Е. Луцкого.— Харьков, Научно-техническое изд-во Украины, 1938, 304 с.