My-library.info
Все категории

Морис Клайн - Математика. Утрата определенности.

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Морис Клайн - Математика. Утрата определенности.. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математика. Утрата определенности.
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
236
Читать онлайн
Морис Клайн - Математика. Утрата определенности.

Морис Клайн - Математика. Утрата определенности. краткое содержание

Морис Клайн - Математика. Утрата определенности. - описание и краткое содержание, автор Морис Клайн, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. читать онлайн бесплатно

Математика. Утрата определенности. - читать книгу онлайн бесплатно, автор Морис Клайн

150

Различие между математикой и «теоретическим» естествознанием полностью осознавал Лейбниц. «Универсальная математика, — писал он, — это, так сказать, логика воображения»; предметом ее является «все, что в области воображения поддается точному определению». В XIX в. специфику математики, отличие ее от естественных (и гуманитарных) наук отчетливо понимали, скажем, замечательный немецкий математик Герман Грассман, говоривший, что «чистая математика есть наука особого бытия, поскольку она рождена в мышлении», или один из создателей математической логики англичанин Джордж Буль, еще четче сформулировавший ту же мысль: «Математика изучает операции, рассматриваемые сами по себе, независимо от различных материй, к которым они могут быть приложены». Я. Бойаи (в отличие от Лобачевского или Гаусса) при создании неевклидовой геометрии подходил к ней не как к возможной системе устройства физической Вселенной, а как к чисто логической схеме, «аксиоматизированной структуре», как сказали бы мы сегодня. При этом любопытно отметить, что Лейбниц (в отличие от Ньютона), Грассман, Буль или Я. Бойаи не получили специального математического образования и были полностью свободны от давления сложившихся традиций, что в чем-то, конечно, ограничивало их возможности, но в то же время придавало их мышлению особую свежесть и остроту.

151

В применениях математики широко используются степенные ряды вида a0 + a1x + a2x2 + a3x3 + … и тригонометрические ряды, или ряды Фурье (скажем, a0 + a1cos x + b1sin x + a2cos 2x + b2sin 2x + …).

152

В противоположность этому попытки Паскаля заинтересовать Ферма и Гюйгенса теорией вероятностей, в значительной степени созданной этими тремя учеными, оказалась полностью удачными; частично, видимо, это объяснялось тем,что теория вероятностей возникла сразу же как «прикладная» наука (со столь, впрочем, малопочтенной областью применения, как теория азартных игр), а частично, может быть, прозорливой интуицией гениев, «предчувствующих» будущие глубочайшие прикладные возможности создаваемой ими области математической науки.

153

В частности, законы умножения гамильтоновых «кватернионных единиц» i, j и k прояснило идущее от Гамильтона отождествление этих «единиц» с (физическими) вращениями пространства на 90° вокруг трех взаимно перпендикулярный осей: 0x, 0y и 0z.

154

Здесь трудно удержаться от соблазна процитировать одно место из предисловия к книге [100] замечательных математиков и педагогов Д. Пойа (Полиа) и Г. Сегё: «Не нужно забывать, что существуют обобщения двух родов: малоценные и полноценные. Первые — обобщения путем разрежения, другие — путем сгущения. Разредить — значит, наболтав воды, изготовить жиденькую похлебку, сгустить — значит составить полезный, питательный экстракт. Соединение понятий, мало связанных друг с другом для обычного представления, в одно объемлющее есть сгущение; так сгущает, например, теория групп рассуждения, которые прежде, будучи рассеянными… выглядели совершенно различными. Привести  примеры обобщения путем разрежения было бы еще легче, но мы не хотим наживать себе врагов».

155

Вожди группы Бурбаки охотно декларировали «антиприкладной» характер своего творчества (ср., например, цитируемую ниже статью [115] Ж. Дьедонне), но к этому их тезису, как и к некоторым другим высказываниям, следует относиться с осторожностью. Известно, что один из основателей (и наиболее влиятельных членов) группы Бурбаки Андре Вейль по просьбе знаменитого антрополога и философа Клода Леви-Стросса написал математическое приложение «Математическая теория брачных союзов» к диссертации Леви-Стросса «Элементарные системы родства» (1949). С другой стороны, весьма близкий группе Бурбаки Рене Том является создателем имеющей огромное прикладное значение так называемой теории катастроф (см. [101]) и отличается поразительной широтой внематематических интересов (см., например, [102]). Кроме того, несмотря на неоднократно декларировавшуюся вождями группы Бурбаки антиприкладную направленность их группы, в целом свойственное этой группе стремление рассматривать математику как науку о математических структурах (см. [11]*) идет навстречу определенным устремлениям в современной прикладной математике, выражающимся в росте значения математического моделирования внематематических феноменов (ср. [103]).

156

Поразительна близость этой позиции Фурье к воззрениям пифагорейцев (гл. I).

157

В последней части «Применение к пространству» замечательной лекции [106] Риман сам подробно обсуждает приложимость к (будущей) физике предложенных им геометрических схем.

158

Классификация дифференциальных уравнений по свойственным им группам симметрии была произведена великим норвежским математиком Софусом Ли (1842-1899), который построил своеобразную «теорию Галуа для дифференциальных уравнений», где вопрос о решимости алгебраического уравнения в радикалах заменялся вопросом о решимости дифференциального уравнения «в квадратурах» (т.е. с применением операции интегрирования). В свое время эта теория пользовалась очень большой популярностью, но затем в связи с наступлением века ЭВМ, поставившего совсем по-другому вопрос о решении дифференциальных уравнений, была почти забыта. Взрывоподобный рост интереса к учению Ли о «группах симметрии дифференциальных уравнений», выразившийся, в частности, в появлении большого числа посвященных этой теме книг (см., например, [109]) и диссертаций, относится к последним десятилетиям; это связано с той большой ролью, которую играют соображения симметрии в современной физике.

159

Артур Кали дал общее (абстрактное) определение группы еще в работах 1849-1854 гг. [у Э. Галуа фигурировали только группы подстановок. — Ред.], но значение этого понятия было оценено по достоинству лишь после того, как оно стало широко применяться в математике и естественных науках (о некоторых применениях мы упоминали выше).

160

Характерно даже название, которое дал Харди своему учебнику [110] (классического) математического анализа. [Заметим, что, вероятно, не меньше 90% всех упоминаний имени воинственного адепта «чистой» математики Харди в современной научной, научно-популярной и учебной литературе связано не с его на самом деле выдающимися достижениями в теории чисел, а с единственным «греком» — с выполненной в молодости несложной работой прикладного характера (так называемый закон Харди — Вейнберга популяционной генетики — см., например, [111]).]

161

Этот тезис можно и оспаривать: так, например, в теории кодирования, имеющей огромное прикладное значение в условиях современной недостаточности пропускной способности большинства линий связи, большую роль играет абстрактная алгебра (в частности, так называемые конечные поля Галуа), конечные геометрии (геометрии в плоскостях или пространствах, содержащих всего конечное число точек) и прочие разделы «абстрактной» математики, созданные вне всякой связи с возможными их приложениями (ср., например, [112] или статью [113]). Также и такие области математики, как топология или алгебраическая геометрия, (не говоря уже о функциональном анализе), совсем еще недавно считавшиеся чисто абстрактными, в последнее время стали активно изучаться (и применяться) физиками (см., например, [114]; ср. [103]).

162

Стоун, видимо, имел в виду совершенно новые разделы математической науки (математическую теорию связи, или теорию информации; теорию кодирования; теорию игр), возникшие сравнительно недавно в связи с их применениями, в далее развивавшиеся как чисто абстрактные области знания, бурный прогресс которых, безусловно, стимулировался возможностями немедленного использования полученных в этих направлениях результатов (осуществляющегося, однако, чаще всего, не математиками, а техниками, экономистами или биологами).

163

SIAM [Society for Industrial and Applied Mathematics] Review, October 1962, pp. 297-320.

164

Классический пример, подкрепляющий высказанную мысль, доставляет нам хотя бы теория пределов, начавшаяся с принадлежащей Ньютону «чисто физической» концепции предела; также и первое определение предела, данное Д'Аламбером в одноименной статье знаменитой «Энциклопедии», с нашей сегодняшней точки зрения было дефектным (так, например, Д'Аламбер настаивал на монотонном приближении переменной величины к своему пределу). Ныне же мы имеем много разных определений этого понятия с разными областями применимости. (О другом примере такого рода — лейбницевском исчислении дифференциалов — ниже говорит сам автор.)


Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математика. Утрата определенности. отзывы

Отзывы читателей о книге Математика. Утрата определенности., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.