164
Классический пример, подкрепляющий высказанную мысль, доставляет нам хотя бы теория пределов, начавшаяся с принадлежащей Ньютону «чисто физической» концепции предела; также и первое определение предела, данное Д'Аламбером в одноименной статье знаменитой «Энциклопедии», с нашей сегодняшней точки зрения было дефектным (так, например, Д'Аламбер настаивал на монотонном приближении переменной величины к своему пределу). Ныне же мы имеем много разных определений этого понятия с разными областями применимости. (О другом примере такого рода — лейбницевском исчислении дифференциалов — ниже говорит сам автор.)
Напомним, что в те времена под словом «геометрия» часто понималась вся математика.
Довольно распространенным ныне является такое «определение» (математического) доказательства: доказательство — это рассуждение, которое убеждает нас в справедливости теоремы. При этом вполне допустимо (и даже неизбежно) сосуществование в одной стране и в одно время совершенно разных уровней строгости допустимых доказательств в зависимости от научных школ или даже математических дисциплин (скажем, математическая логика и дифференциальная геометрия).
Карл Раймунд Поппер выдвинул также так называемый принцип фальсификации (опровержимости), согласно которому критерий научности теории задается возможностью опытного ее опровержения.
Название книги Клейна (Elementarmathematik vom höheren Standpunkte aus) точнее было бы перевести как «Элементарная математика с высшей точки зрения». — Прим. ред.
Ср. со сказанным в гл. VIII.
Противоположной точки зрения придерживался Гильберт — см. приведенную выше цитату из его статьи «О бесконечном» или с. 22 книги [51]. Популярно также известное высказывание А. Эйнштейна: «Самое непостижимое во Вселенной — это то, что она все-таки постижима».
Ср. с примечанием {6} к Введению.
Здесь естественно вспомнить о знаменитом физическом принципе неопределенности Гейзенберга, одна из распространенных интерпретаций которого говорит о неизбежном изменении физической интуиции при попытке ее наблюдения, скажем, об отклонении частицы от первоначального положения при падении на нее фотона света, без чего частицу нельзя увидеть. Аналогично этому филологи иногда говорят об определенной деформации природного явления при описании его на том или ином языке (Аристотель говорил о бесконечности природных явлений и конечности числа слов любого языка) и т.д.
Так, от Вейля идет, в частности, важная идея классификации физических объектов по свойственным им группам симметрии [121] (независимо от Вейля эту идею выдвинул в 1963 г. американский физик венгерского происхождения Юджин (Эуген) Вигнер (1963), уже после смерти Вейля удостоенный за нее Нобелевской премий по физике); Вейлю же принадлежит первый, притом выдающийся, учебник [122] общей теории относительности, содержащий свежие физические идеи, сыгравшие большую роль в дальнейшем прогрессе физической науки (ср., например, [123], а также [124]).
Учебник математической логики [125] отличается от многих других пособий широким обсуждением (гл. 1-4, с. 17-244) общих вопросов (смежных между математической логикой и философией математики) обоснования математической науки; с этой точки зрения вдумчивому читателю, желающему глубже ознакомиться с затронутыми в настоящей книге вопросами, вполне можно порекомендовать книгу [125] наряду, скажем, с классическим сочинением [86]* и довольно сложными, но высокосодержательными книгами [81].
При этом, разумеется, следует различать, скажем, опровержения теорий флогистона или эфира, полностью отброшенные современной наукой, и уточнения ньютоновской механики и гюйгенсовской оптики, не отменяющие, а лишь дополняющие эти выдающиеся достижения науки XVII в.
По поводу возможных вариантов геометрической структуры физического пространства, отличных от классической геометрии Евклида, см. гл. IV. Что касается случаев, в которых может оказаться неприемлемой обычная арифметика, то здесь можно, например, порекомендовать читателю неконкретную, но весьма выразительно написанную заметку [30].
Сходные результаты может дать анализ русского РЖ «Математика» или немецкого (ГДР / ФРГ) журнала Zentralblaft für Mathematik.
Здесь естественно вспомнить призыв Д'Аламбера, хорошо понимавшего шаткость оснований, на которых зиждилась математика его времени: «Работайте, работайте — понимание придет потом».
Сложность трактовки материи в квантовой механике (упомянутые в этой книге «размазанность» элементарных частиц в задание их исключительно с помощью абстрактных математических конструкций) не отменяет, скажем, понятия массы, играющего основную роль как в физике макромира, так и в описании колоссальных объектов современной астрофизики и в физике микромира.
Здесь имеются в виду описывающая пространство-время специальной теории относительности (СТО) так называемая псевдоевклидова геометрия Минковского (см. по этому поводу, например, классическую книгу [127]) и риманова (точнее, псевдориманова) геометрия, являющаяся базисом общей теории относительности (см., скажем, основополагающую статью [128] или ту же книгу [127]).
Последовательное (и в ряде отношений расходящееся с современными физическими концепциями) убеждение Эйнштейна в принципиальной прогнозируемости всех физических явлений (ср., например, [129]) обусловило непринятие им квантовой механики (отчасти базирующейся на его же классических работах по теории фотоэффекта) — в связи со статистической трактовкой мира этой наукой.
См. примечание {115} к гл. X и книгу [69].
Разумеется, ненадежность здесь может быть связана, скажем, с неполным знанием начальных условий фигурирующего в решении задачи дифференциального уравнения или в неопределенности коэффициентов уравнения (связанных с физическими характеристиками сооружения), но никак не с теми относящимися и основам математики полуфилософскими трудностями, которым посвящены гл. IX-XII.
Паскаль писал эти слова в XVII в. В настоящее время физика смело излагает свои позиций в вопросе о поведении Вселенной в ближайшей окрестности (во времени превышающей всего лишь величину порядка 10−33 с) так называемого Большого взрыва, от которого астрофизики датируют существование Вселенной с привычным нам «пространством-временем» (ср., например, книги [135] или статью [136]); будущее Вселенной астрофизики также прогнозируют в очень больших пределах времени — почти до ее (гипотетического) «конца».
Ср. с принадлежащей Г. Вейлю (в статье «Место Феликгеа Клейна в математической современности», 1930) характеризацией той роли, какую играет математика в человеческой культуре ([124], с. 11). [Названная статья намечена к публикации в подготавливаемом издательством «Наука» сборнике научных статей Вейля и в сборнике его научно-популярных статей.]
Морис Клайн
Математика. Утрата определенности
Научный редактор А.Н. Кондрашова
Мл. научный редактор М.В. Суровова
Художники Д.А. Аникеев, Ю.А. Ващенко
Художественный редактор В.Б. Прищепа
Технический редактор Л.П. Бирюкова
Корректор В.И. Постнова
ИБ 3589
Сдано в набор 02.04.84 Подписано к печати 24.08.84. Формат 60 X 901/16. Бумага типографская №2. Гарнитура литератур. Печать высокая. Объем 14,0 бум. л. Усл. печ. л. 28,0. Усл. кр.-отт. 28, 0. Уч.-изд. л. 32,67. Изд. №12/2649. Тираж 50 000 экз. Заказ №341. Цена 1 р. 90 к.
Издательство «Мир» 129820, Москва, И-110, ГСП, 1-й Рижский: пер., 2
Отпечатано в Ленинградской типографии №2 головном предприятии ордена Трудового Красного Знамени Ленинградского объединения «Техническая книга» им. Евгении Соколовой Союзполиграфпрома при Государственном комитете СССР по делам издательств, полиграфии и книжной торговли, 198052, г. Ленинград, Л-52, Измайловский проспект, 29 с матриц ордена Октябрьской Революции и ордена Трудового Красного Знамени Первой Образцовой типографии имени А.А. Жданова Союзполиграфпрома при Государственном комитете СССР по делам издательств, полиграфии и книжной торговли. 113054, Москва, Валовая, 28