Точки, находящиеся на отрезке, указывают высоту, на которой расположена каждая из окружностей. Этот рисунок является визуализацией сферы на плоскости (рисунок Хосу Арройо).
Возвращаясь к случаю гиперсферы радиуса 5 м в четвертом измерении, мы можем применить аналогичный метод и представить полугиперсферу как семейство всех сфер с центрами на вершине мачты и с радиусами, меньшими 5 м или равными 5 м. Мы можем представить гиперсферу как все сферы, расположенные на различных высотах h в направлении ана или ката.
Все сферы в направлении, перпендикулярном к трехмерному пространству (в направлении ана или ката), являющиеся частями гиперсферы, изображены на отрезке, точки которого указывают высоту каждой сферы. Этот рисунок является визуализацией гиперсферы в нашем трехмерном пространстве (рисунок Хосу Арройо).
Ортогональные проекции
Одним из методов, используемых для визуализации четырехмерного объекта, в данном случае гиперкуба, в трехмерном или даже в двумерном пространстве, являются математические проекции, которые преобразуют четырехмерное пространство в трехмерное. Как правило, мы можем использовать математические проекции для преобразования любого n-мерного пространства в пространства меньших размерностей.
Существует два типа проекций — геометрические и алгоритмические. Первый является более естественным, его можно интерпретировать как лучи света, дающие изображения и тени. Алгоритмические проекции выражаются с помощью математических формул. Это означает, что геометрическая интерпретация теряется, зато можно использовать мощные математические средства.
В этой главе мы рассмотрим два типа естественных геометрических проекций, используемых в повседневной жизни. Это ортогональные проекции, соответствующие освещению солнечным светом, и центральные проекции, связанные с близко расположенным источником света, например лампой или фонарем. Именно так работает наше зрение, и именно их имитирует перспектива в живописи.
* * *
АЛГОРИТМЫ И АЛГОРИФМЫ
Алгоритм — это упорядоченный и конечный набор действий для решения задачи, будь то в области математики или других наук. Метод вычислений также называется алгоритмом. Раньше в качестве синонима слова «алгоритм» использовали слово «алгорифм», однако в наши дни такое написание практически не употребляется, за исключением устойчивых выражений, как, например, «Нормальный алгорифм Макарова». Математик А.А. Макаров (младший) (1903–1979) был основоположником советской школы конструктивной математики и ввел понятие нормального алгоритма.
* * *
Для начала вспомним, как мы в детстве рисовали куб. Наверняка наши изображения были похожи на рисунок слева. Но мы тогда и не подозревали, что рисуем ортогональную проекцию куба.
Ортогональная проекция — это отображение, а именно проецирование в определенном направлении n-мерного координатного пространства любой размерности n на одно из его подпространств (n — 1) размерности. Иными словами, все точки, которые находятся на одной прямой линии, расположенной в заданном направлении, проецируются в одну точку (n — 1) — мерного подпространства, в которой эта прямая линия пересекает подпространство. В трехмерном пространстве подпространство, на которое мы проецируем, является плоскостью. Образ объекта, полученный в результате ортогонального проецирования, представляет собой своего рода тень объекта, полученную при освещении его параллельными лучами света, падающими на плоскость проекции в заданном направлении (см. рисунок ниже). Например, так как Солнце находится очень далеко от Земли, солнечные лучи можно считать параллельными, и они падают на Землю в определенном направлении. Таким образом, тени предметов являются ортогональными проекциями. Конечно, если изменить направление проецирования, то получаются различные плоские проекции одного и того же объекта.
Ортогональная проекция куба из «Начертательной геометрии» французского математика Гаспара Монжа.
Рассмотрим теперь трехмерный куб и спроецируем его на плоскость. Чтобы лучше представить проекцию, возьмем кубическую рамку — стержни, показывающие структуру куба и представляющие линии, из которых состоит куб. Проецируя в разных направлениях, мы получим следующие изображения. Как видим, они очень хорошо отражают интуитивный подход, который мы использовали на протяжении всей книги: куб — это результат перемещения квадрата в перпендикулярном направлении.
Ортогональные проекции куба в следующих направлениях: а — перпендикулярном к двум граням куба и параллельном четырем другим; б — параллельном только верхней и нижней граням куба; в — параллельном диагонали; г — не параллельном ни граням, ни диагонали.
В этом случае хорошо видно свойства ортогональных проекций: они переводят отрезки прямых в отрезки или точки и сохраняют параллельность. Кроме того, параллельные отрезки равной длины проецируются в параллельные отрезки также равной длины.
Если мы теперь ортогонально спроецируем четырехмерный гиперкуб (точнее, его каркас) на трехмерное пространство, мы получим трехмерную фигуру, изображенную на рисунке ниже.
Ортогональная проекция каркаса гиперкуба на трехмерное пространство, сделанная с помощью конструктора Zometool.
Если мы ортогонально спроецируем ее на плоскость, то получим классическое изображение гиперкуба.
Как видно, оно соответствует интуитивному образу гиперкуба, который мы получали ранее, представляя, как куб перемещается в перпендикулярном направлении. Вернемся снова к этой идее. Если куб перемещается в перпендикулярном направлении, то он порождает гиперкуб, изображение которого на плоскости выглядит следующим образом:
В зависимости от направления перемещения и симметричности гиперкуба его изображение будет отличаться. Но можно пойти еще дальше: при перемещении гиперкуба в перпендикулярном направлении получается 5-мерный куб.
И так можно продолжать бесконечно, получая все более красивые изображения.
* * *
НОВЫЙ ЯЗЫК АРХИТЕКТУРНОГО ДИЗАЙНА
Американский архитектор, писатель, дизайнер и теософ Клод Брэгдон (1866–1946) в своей книге «Проективный орнамент» (1915) описал систему для получения геометрических узоров, которые можно использовать в архитектуре, графическом дизайне и украшениях. Этот метод широко использовался в современной архитектуре, например при строительстве Торговой палаты в Рочестере (1915–1917), а также в дизайне журналов, плакатов и книг. Брэгдон писал о необходимости создания нового языка архитектуры и орнаментов, основанного на геометрии. Более того, четвертое измерение оказалось одним из основных инструментов для декоративного дизайна. Брэгдон утверждал, что «новые декоративные мотивы следует искать в четырехмерной геометрии».
Иллюстрация из книги «Проективный орнамент», показывающая, как четвертое измерение используется для создания новых декоративных мотивов.
Центральная проекция
Изображения куба и гиперкуба, полученные в предыдущем разделе, являются «тенями» при падении на объект параллельных «лучей света». Но теперь мы будем рассматривать тени, порожденные лучами света, исходящими из одной точки.
Именно такие изображения видит наш глаз или объектив фотокамеры. Соответствующая проекция называется центральной проекцией. Это отображение n-мерного координатного пространства в (n — 1) — мерное подпространство, при котором лучи соединяют центральную точку (источник света) с подпространством проекции, так что все точки, которые находятся на одном таком луче, будут проецироваться в одну точку (n — 1) — мерного подпространства.
* * *
МЕТОД ПЕРСПЕКТИВЫ В ИСКУССТВЕ
Метод перспективы в искусстве Ренессанса был научной и художественной революцией в подходе к представлению пространства на плоскости. В древности и в средние века образы на картинах были плоскими, в том смысле, что у них не было глубины, пропорции не сохранялись, а формы и объемы искажались. В Средние века, например, более крупно изображали более важных с религиозной точки зрения персонажей. В эпоху Ренессанса художники обратились к науке в поисках методов и приспособлений, позволяющих получить изображение, более близкое к тому, что видит глаз художника. Среди великих художников, использовавших метод перспективы, были Джотто, Пьеро делла Франческа, Брунеллески, Леон Баттиста Альберти, Рафаэль, Дюрер и Леонардо да Винчи. Метод перспективы доминировал в искусстве с XV до XIX в.