My-library.info
Все категории

Антонио Дуран - Том 27. Поэзия чисел. Прекрасное и математика

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Антонио Дуран - Том 27. Поэзия чисел. Прекрасное и математика. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Том 27. Поэзия чисел. Прекрасное и математика
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
240
Читать онлайн
Антонио Дуран - Том 27. Поэзия чисел. Прекрасное и математика

Антонио Дуран - Том 27. Поэзия чисел. Прекрасное и математика краткое содержание

Антонио Дуран - Том 27. Поэзия чисел. Прекрасное и математика - описание и краткое содержание, автор Антонио Дуран, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Поэзия — недоказуемая истина. Математика же, напротив, состоит из доказательств. И все-таки у этих двух сфер есть что-то общее. Ученый Анри Пуанкаре писал: «Думать, что математика затрагивает лишь интеллект, означало бы забыть о красоте математики, элегантности геометрии, которые прекрасны в самом полном смысле этого слова». Математик находится посередине между наукой и искусством, и это подтверждает неизбежную связь между самой абстрактной из наук и человеческими эмоциями. Цель этой книги — на нескольких ярких примерах показать красоту математики.

Том 27. Поэзия чисел. Прекрасное и математика читать онлайн бесплатно

Том 27. Поэзия чисел. Прекрасное и математика - читать книгу онлайн бесплатно, автор Антонио Дуран

* * *

ЭЙЛЕР И БЕСКОНЕЧНЫЕ РЯДЫ

Эйлер уточнил свою исходную идею следующим образом. Вернемся к произведению

(1 — az2)·(1 — bz2)·(1 — cz2)·… = 1 — Az2 + Bz4 - Cz6 +…

Теперь рассмотрим число 8, на которое умножается z4. Нетрудно видеть, что это число В образуется попарным умножением с последующим сложением чисел а, Ь, с которые умножаются на z2 в левой части равенства: B = ab + ac + bc + …

Таким образом, если мы запишем Р = а + Ь + с +… и Q = а2 + Ь2 + с2 + …. путем простых подсчетов имеем: РA и Q = A·P2·B.

Если мы вновь рассмотрим два разложения для функции синуса:


и примем во внимание, что в этом случае А = 1/6, B = 1/120 и, как мы уже вычислили, Р = π2/6, получим значение суммы чисел, обратных четвертым степеням натуральных чисел: 1 + 1/24 + 1/34 + 1/44 + … = π4/90.

Нечто подобное можно выполнить для z6 и последующих степеней. Благодаря этому Эйлер вычислил суммы чисел, обратных четным степеням натуральных чисел, начиная от второй и заканчивая двадцать шестой. Несколько лет спустя Эйлер обнаружил общую формулу суммы чисел, обратных произвольной четной степени натуральных чисел. О сумме чисел, обратных нечетным степеням натуральных чисел, ничего не известно и поныне. Мы знаем лишь, что первые несколько подобных сумм являются иррациональными числами.

* * *

И вновь суммы Эйлера помогут нам понять, что Харди имел в виду, когда говорил о «глубине» математических идей. Эйлер связал математические понятия из разных областей. В методе Эйлера скрывается понятие бесконечности, принадлежащее, можно сказать, к метафизике. Этот метод относится и к арифметике, так как в его задаче рассматриваются натуральные числа — требуется сложить квадраты чисел, обратных им. При вычислении суммы на сцену выходит геометрия, так как значение суммы выражается с помощью квадрата числа π, описывающего геометрию окружности. Наконец, весь метод Эйлера вращается вокруг представления функции в виде бесконечной суммы и бесконечного произведения — эти методы относятся к математическому анализу. И все это богатство взаимосвязей между столь разными «стратами» проявилось в одной идее Эйлера, которая на первый взгляд кажется простой. Именно это имел в виду Харди, когда говорил о глубине идеи: он рассуждал о ее способности неизбежно и плодотворно самым блестящим образом связывать между собой разные математические «страты».


Неожиданная, неизбежная, экономичная и озаряющая

К общности и глубине Харди добавил еще три свойства, способные наделить математическую идею эстетической ценностью. Это не свойства идеи как таковые, а, скорее, характеристики, показывающие способность идеи вызвать определенную эстетическую реакцию. Харди назвал эти свойства неожиданностью, непреложностью и экономичностью. Он описал их так: «Доказательства необычны и удивительны по форме; используемые инструменты кажутся по-детски простыми по сравнению с далеко идущими результатами, но все заключения непреложно вытекают из теоремы».

Нетрудно видеть, что суммы Эйлера обладают всеми этими характеристиками.

С одной стороны, сама простота идеи Эйлера делает ее необычной, и этого достаточно, чтобы рассуждения ученого удивляли — как нечто столь простое может привести к таким глубоким результатам? Кроме того, читатель согласится с нами в том, что расчеты Эйлера имеют абсолютно неожиданный результат: мы не могли и представить, что суммы четных степеней натуральных чисел будут связаны с числом π. Именно об этом писал Харди, говоря о неожиданности математических идей.

В идеях Эйлера четко прослеживается непреложность выводов. Увидев простые и безупречные рассуждения Эйлера, число π2/6, которому равна сумма чисел, обратных квадратам натуральных, кажется абсолютно неоспоримым и неизбежным.

Наконец, отчетливо видна экономичность, с которой действовал Эйлер: всего в нескольких строках он смог решить задачу, с которой не справились Лейбниц, братья Бернулли и, возможно, сам Ньютон. Решение Эйлера, несомненно, прекрасный пример того, что философ Джордж Сантаяна в своей книге «Постижение красоты» назвал «выражением экономичности»: из нашей способности ценить экономичность вещей постепенно рождается эстетическое восприятие.

Три качества, о которых писал Харди, связаны с тем, что Сантаяна в «Постижении красоты» называл «изобретательностью», или с тем, что математик Джан-Карло Рота именовал «способностью идеи озарять» — в главе «Феноменология математической красоты» (The Phenomenology of Mathematical Beauty) своей книги «Непрерывные мысли» (Indiscrete Thoughts) Рота использует слово enlightenment («озарение»). С одной стороны, Сантаяна напрямую связывал гениальность с глубиной: «Гений обладает способностью проникать в глубины вещей, чтобы извлечь оттуда некое значимое обстоятельство или взаимосвязь, позволяющие увидеть рассматриваемый объект в новом, более ярком свете». С другой стороны, согласно Рота, «озаряющая» идея проливает свет на понятия, с которыми она связана, или помогает лучше проанализировать и определенные математические задачи. Именно этими качествами обладает идея, которую использовал Эйлер при вычислении суммы чисел, обратных четным степеням натуральных чисел.

Эта способность математических идей озарять восхищала ученых, инженеров и архитекторов во все времена. Приведем слова архитектора Ле Корбюзье, которые он произнес при работе над проектом одного из домов: «Отсутствие правила, закона, бросилось мне в глаза. Это наполнило меня ужасом, так как я увидел, что работаю в полном хаосе. В тот момент я понял необходимость вмешательства математики, потребность в каком-то регуляторе. С того момента эта одержимость всегда занимала уголок в моем мозгу».


Бесконечное у Эйлера и возвышенное у Канта

Два последних раздела главы посвятим книге Эйлера «Введение в анализ бесконечно малых», откуда мы заимствовали примеры, которыми проиллюстрировали рассуждения Харди о красоте математики.

Во «Введении в анализ бесконечно малых» не описывается ни дифференциальное, ни интегральное исчисление. В этой книге, в соответствии с ее названием, Эйлер показывает читателю, как следует обращаться с бесконечно большими и бесконечно малыми величинами. Он рассматривает элементарные функции с помощью бесконечных процессов: описывает представление функций в виде рядов и бесконечных произведений (впервые в истории математики), а также использует разложение функций для решения различных задач. Некоторые из них относятся к математическому анализу, например задача о вычислении сумм бесконечного числа слагаемых (примеры подобных задач мы привели в третьем разделе этой главы), другие же скорее относятся к теории чисел[11].

Метафизика бесконечного и способность Эйлера объяснять сделали «Введение в анализ бесконечно малых» одной из самых красивых книг в истории математики. Чуть позже мы расскажем, как эта прекрасная работа повлияла на один из фундаментальных трудов по эстетике — книгу «Критика способности суждения» немецкого философа Иммануила Канта, в частности эстетическую категорию возвышенного.

Чтобы ввести читателя в курс дела, вкратце расскажем о том, как понимал бесконечность Эйлер и что означают слова «бесконечно малые» в заглавии его книги. Эйлер не дал никакого определения бесконечно малым и бесконечно большим величинам, на которых основывались все понятия анализа в XVII, XVIII и большей части XIX века, а работал с ними на интуитивном уровне. Целью математика было обучить читателя работе с бесконечно малыми и бесконечно большими величинами, сформировать у него некоторое интуитивное представление об их особенностях.

* * *

«ВВЕДЕНИЕ В АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ», ОДИН ИЗ ТРЕХ КЛАССИЧЕСКИХ МАТЕМАТИЧЕСКИХ ТЕКСТОВ

«Введение в анализ бесконечно малых» не простая книга; она сыграла основополагающую роль в создании математического анализа. Историк математики Карл Бойер в своей статье о наиболее выдающихся математических текстах всех времен, написанной в 1969 году, поставил «Введение в анализ бесконечно малых» в один ряд с «Началами» Евклида и «Алгеброй» Аль-Хорезми: «Нетрудно видеть, что трактатом, оказавшим наибольшее влияние на математику древности (и на математику всех эпох), стали «Начала» Евклида. Определить, какой из средневековых трудов стал наиболее влиятельным, не так просто. Одна из подходящих кандидатур — «Алгебра» Аль-Хорезми. Можно ли выделить современный текст, сопоставимый с ними по авторитету и влиянию, которое они оказали? Да, можно выделить текст, который «стоял на плечах гигантов» — трудов барокко и Просвещения — и повлиял практически на всех последующих авторов. Это «Введение в анализ бесконечно малых» Эйлера. Эта книга стала для математики тем же, чем стали «Начала» Евклида для синтетической геометрии древних греков, а «Алгебра» Аль-Хорезми — для элементарной алгебры. Понятия функции и бесконечных процессов зародились в XVII веке, однако лишь с выходом «Введения в анализ бесконечно малых» они стали полноправными членами математического триумвирата, образованного геометрией, алгеброй и анализом».


Антонио Дуран читать все книги автора по порядку

Антонио Дуран - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Том 27. Поэзия чисел. Прекрасное и математика отзывы

Отзывы читателей о книге Том 27. Поэзия чисел. Прекрасное и математика, автор: Антонио Дуран. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.