My-library.info
Все категории

Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.
Автор
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
298
Читать онлайн
Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. краткое содержание

Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - описание и краткое содержание, автор Gustavo Pineiro, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.Прим. OCR: Из-за особенностей отображения иврита в выражениях алеф(X) заменен на X.

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. читать онлайн бесплатно

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - читать книгу онлайн бесплатно, автор Gustavo Pineiro

Но вернемся к первым годам жизни Кантора. У его отца было слабое здоровье, и в 1856 году врачи посоветовали ему уехать от суровых петербургских зим в зону более благоприятного климата. Тогда Кантор-отец завершил все свои дела в России, и семья перебралась в Германию. Сначала они поселились в Висбадене, где Георг посещал гимназию, но вскоре переехали во Франкфурт. Ученый всегда с ностальгией вспоминал детство, проведенное в Санкт-Петербурге, и хотя всю оставшуюся жизнь прожил в Германии, никогда не ощущал себя там как дома. Насколько известно (и это очень похоже на его романтическую и даже экзальтированную натуру), после 1856 года он больше никогда не писал по-русски. По дневникам времен гимназии видна его все возрастающая склонность к математике. Хотя отец настаивал на том, чтобы Георг изучал инженерное дело, в 1863 году он поступил в Берлинский университет, желая посвятить себя своему настоящему призванию, и даже страсти, — математике. В то время это был один из главных мировых математических научных центров. Здесь преподавали знаменитые математики Карл Вейерштрасс и Эрнст Куммер, оба они стали учителями Кантора. Также его наставником был Леопольд Кронекер, со временем тот оказался одним из самых яростных противников теории бесконечности.

Кантор окончил Берлинский университет в 1867 году и спустя два года получил место профессора в Галльском университете. Забегая вперед, отметим, что именно в Галле ученый развил свою теорию математической бесконечности, именно там он сделал открытия, благодаря которым стал одной из важнейших фигур в математике. Его идеи не всегда встречали понимание и, напротив, часто вызывали отторжение. Мы уже упомянули о Кронекере, который сделал все возможное, чтобы воспрепятствовать распространению идей Кантора. Еще один пример относится к 1874 году, когда Кантор захотел опубликовать свои первые открытия в исследовании бесконечности. Черновик его статьи увидел Вейерштрасс и посоветовал Кантору не упоминать о самых радикальных выводах разбираемых теорем. Более того, он предложил вообще не говорить о бесконечности. Почему у Кантора было так много противников? Какие выводы следовали из статьи 1874 года и в чем заключалась их революционность? Чтобы ответить на эти вопросы, мы должны сначала ознакомиться с историей бесконечности.


ПОТЕНЦИАЛЬНАЯ ИЛИ АКТУАЛЬНАЯ

Что такое бесконечность? Точнее, что мы имеем в виду, когда утверждаем, что совокупность объектов бесконечна? Прежде всего уточним, что будем использовать слово «объект» в самом широком значении, включающем в себя и абстрактные, и воображаемые объекты. Например, эта группа может состоять из всех дней декабря 3000 года.

Проанализируем сперва противоположное понятие, которое нам гораздо ближе, — конечность. Что мы подразумеваем, говоря, что некая группа объектов конечна?

Само по себе это слово означает «то, что заканчивается», «то, что не продолжается бесконечно». В таком случае принято думать, что группа объектов конечна, если хотя бы теоретически их можно пересчитать по одному так, что в определенный момент подсчет завершится.

Родители Кантора — Георг Вольдемар Кантор, успешный предприниматель, и Мария Анна Бойм, виртуозная скрипачка.

Мемориальная доска на доме в Санкт- Петербурге, где родился Кантор.

Берлинский университет, 1880 год. Здесь в 1867 году Кантор получил степень доктора математики.


Совокупность всех дней декабря 3000 года, которую мы привели выше, конечна. Возьмем еще один пример: представим, что всех взрослых людей, населяющих Землю в данный момент, попросили герметически закрыть бутылки с водой. Количество молекул кислорода, содержащихся в миллиардах этих бутылок, все равно будет конечным. Разумеется, на практике в этом случае было бы чрезвычайно трудно подсчитать все объекты, входящие в эту группу, но конкретные сложности не имеют значения для понятия конечности. Главное, что теоретически рано или поздно подсчет завершился бы, даже если на это ушли бы века. Бесконечной же группа является, если при пересчете по одному всех составляющих его частей они никогда не закончатся. Подчеркнем, что в этом определении мы используем слово «никогда» не в метафорическом смысле, не как синоним «очень большого количества времени», его надо понимать буквально: «никогда, бесконечно».

Понятие бесконечности — это замечание очень важно — трактуется двумя различными способами. Она может быть потенциальной или актуальной.

Чтобы понять разницу между ними, представим себе человека, который записывает все натуральные числа (числа, которые получаются путем прибавления 1, начиная с 0, то есть 0, 1, 2, 3, 4,...). Он начинает писать, в какой-то момент доходит до 100, потом до 1000, наконец до 10000. Работа, за которую он взялся, не закончится никогда, потому что когда он дойдет до 100000, ему надо будет продолжить со 100001, когда дойдет до 1000000 — с 1000001 и так далее. Он никогда не доберется до последнего натурального числа, просто потому что его не существует, эти числа никогда не закончатся.


Я против использования бесконечных величин как чего-либо законченного, это использование недопустимо в математике.

Карл Фридрих Гаусс, письмо от 1831 года


Писец поймет, что всей его жизни не хватит, чтобы завершить этот труд, и возьмет ученика, чтобы тот продолжил записывать числа после него. Этот второй писец, в свою очередь, возьмет еще одного ученика и так далее.

Будет ли список чисел, составленный всеми этими писцами, бесконечным? Ответ «да, будет, но только в потенции». Список чисел не является статичной группой, он постоянно растет, и этот рост никогда не закончится. На определенный момент времени — не важно, насколько далеко в будущем, — список будет конечным, но продолжит расти без ограничений.

Таким образом, потенциальная бесконечность — это бесконечность списка, который конечен на каждый момент времени, но может расти безгранично. В этом случае бесконечность приобретает негативный оттенок — это свойство, которое делает невозможным завершение работы.

Теперь возьмем группу, состоящую из всех натуральных чисел, абсолютно всех без исключения (вне зависимости от того, записаны они или нет). Разумеется, список будет бесконечным, только в таком случае мы имеем дело со статичной, завершенной бесконечностью. В эту группу входят все числа, к ней больше ничего не надо добавлять. Это и есть актуальная бесконечность.

Перенесем это понятие на такие величины, как вес, объем или длина. Например, если нарисовать отрезок (прямую, соединяющую точку А с точкой В), его длина, разумеется, будет конечной. Но геометрия говорит нам, что продолжать его можно сколько угодно. И если мы предположим, что это продолжение будет бесконечным, то получим линию с потенциально бесконечной длиной. Она всегда конечна, но способна бесконечно возрастать (см. рисунок 1).

Прямые, которые рассматриваются в современной геометрии, тем не менее имеют длину, считающуюся актуально бесконечной, и они тянутся непрерывно без начала и конца. Заметим, что такую линию невозможно изобразить.

Интересно, что все группы или величины, связанные с природными явлениями, никогда не являются актуально бесконечными, напротив, большинство из них конечны, и лишь очень малая часть — бесконечны, но только в потенции. Так, согласно принятым на сегодняшний день физическим теориям материя не является бесконечно делимой. Каждый атом состоит из определенного количества элементарных неделимых частиц. Возможно даже, что ни время, ни пространство не делимы бесконечно.

С другой стороны, космологи утверждают, что объем и диаметр Вселенной вполне могут быть потенциально бесконечными (диаметр Вселенной — это наибольшее расстояние, которое можно измерить, между двумя ее точками).


Число песчинок, содержащихся в шаре, равном миру, меньше тысячи единиц чисел «седьмых» [это единица с 51 нулем, огромное, но конечное число].

Архимед, «Псаммит»


Если верно, что Вселенная будет продолжать расширяться неопределенное количество времени, то и ее возраст в секундах будет потенциально бесконечен. Продолжая пример с писцами, представим, что они записывают по числу на каждую секунду, прошедшую с момента Большого взрыва. Список запротоколированных секунд постоянно возрастал бы, оставаясь при этом конечным.

Резюмируя, скажем, что время, материя и пространство были бы конечны или, максимум, бесконечны в потенции. Поэтому неудивительно, что в IV веке до н.э. Аристотель утверждал, будто актуальной бесконечности не существует.

РИС.1


БЕСКОНЕЧНОСТЬ ПО АРИСТОТЕЛЮ

Аристотель первым стал исследовать различие между «потенциальным бытием» и «актуальным». Можно сказать, что ребенок — это потенциальный взрослый, а глыба мрамора — потенциальная скульптура. Когда ребенок вырастает, он становится «актуальным» взрослым; скульптор превращает мрамор в актуальную скульптуру. «Звание потенциального мудреца равно дается и тому, кто ничего не изучает», — утверждает Аристотель в книге IX своей «Метафизики», видимо с долей иронии. В том же труде он говорит о бесконечности: 


Gustavo Pineiro читать все книги автора по порядку

Gustavo Pineiro - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. отзывы

Отзывы читателей о книге Бесчисленное поддается подсчету. Кантор. Бесконечность в математике., автор: Gustavo Pineiro. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.