My-library.info
Все категории

Яков Перельман - Математика для любознательных

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Яков Перельман - Математика для любознательных. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математика для любознательных
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
299
Читать онлайн
Яков Перельман - Математика для любознательных

Яков Перельман - Математика для любознательных краткое содержание

Яков Перельман - Математика для любознательных - описание и краткое содержание, автор Яков Перельман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Математика для любознательных читать онлайн бесплатно

Математика для любознательных - читать книгу онлайн бесплатно, автор Яков Перельман

Шесть единиц


В соседней витрине мы видим такую диковинку арифметической кунсткамеры:

- число, состоящее из шести единиц. Благодаря знакомству с волшебными свойствами числа 1001, мы сразу соображаем, что

111111 = 111 x 1001.

Но 111 = 3x37, а 1001 = 7x11x13. Отсюда следует, что наш новый числовой феномен, состоящий из одних лишь единиц, представляет собою произведение пяти простых множителей. Соединяя же эти 5 множителей в две группы на всевозможные лады, мы получаем 15 пар множителей, дающих в произведении одно и то же число 111111:

3 x (7 x 11 x 13 x 37) = 3 x 37037 = 111111

7 x (3 x 11 x 13 x 37) = 7 x 15873 = 111111

11 x (3 x 7 x 13 x 37) = 11 x 10101 = 111111

13 x (3 x 7 x 11 x 37) = 13 x 8547 = 111111

37 x (3 x 7 x 11 x 13) = 37 x 3003 = 111111

(3 x 7) x (11 x 13 x 37) = 21 x 5291 = 111111

(3 x 11) x (7 x 13 x 37) = 33 x 3367 = 111111 и т. д.

Вы можете, значит, засадить общество из 15 человек за работу умножения, и хотя каждый будет перемножать другую пару чисел, все получат один и тот же оригинальный результат: 111111.


Задача № 33

То же число 111111 пригодно и для отгадывания задуманных чисел наподобие того, как выполняется это с помощью чисел 1001 и 10101. В данном случае нужно предлагать задумывать число однозначное, т. е. одну цифру, и повторять ее 6раз. Делителями здесь могут служить пять простых чисел: 3, 7, 11, 13, 37 и получающиеся из них составные: 21, 33, 39 и т. д. Это дает возможность до крайности разнообразить выполнение фокуса. Как надо поступать в этих случаях, - предоставляю придумать читателю.


Числовые пирамиды


В следующих витринах галлереи нас поражают числовые достопримечательности совсем особого рода - некоторое подобие пирамид, составленных из чисел. Рассмотрим поближе первую из таких «пирамид».


Задача № 34

Как объяснить эти своеобразные результаты умножения, эту странную закономерность?


Решение

Возьмем для примера какой-нибудь из средних рядов нашей числовой пирамиды: 123456 x 9 + 7. Вместо умножения на 9 можно умножить на (10 - 1), т. е. приписать 0 и вычесть умножаемое:

Достаточно взглянуть на последнее вычитание, чтобы понять, почему тут получается результат, состоящий только из одних единиц.

Мы можем понять это, исходя и из других рассуждений. Чтобы число вида 12345… превратилось в число вида 11111…, нужно из второй его цифры вычесть 1, из третьей - 2, из четвертой - 3, из пятой - 4 и т. д.; иначе говоря, вычесть из него то же число вида 12345…, лишенное своей последней цифры, - т. е. вдесятеро уменьшенное и предварительно сокращенное на последнюю цифру. Теперь понятно, что для получения искомого результата нужно наше число умножить на 10, прибавить к нему следующую за последней цифру и вычесть из результата первоначальное число (а умножить на 10 и отнять множимое - значит, умножить на 9).


Задача № 35

Сходным образом объясняется образование и следующей числовой пирамиды, получающейся при умножении определенного ряда цифр на 8 и прибавлении последовательно возрастающих цифр. Особенно интересна в этой пирамиде последняя строка, где в результате умножения на 8 и прибавления 9 происходит превращение полного натурального ряда цифр в такой же ряд, но с обратным расположением.

Попытайтесь объяснить эту особенность.


Решение

Получение таких странных результатов уясняется из следующей строки:

* Почему 12345 x 9 + 6 дает именно 111111, было показано при рассмотрении предыдущей числовой пирамиды.

то есть 12345 x 8 + 5 = 111111 - 12346. Но вычитая из числа 111111 число 12346, составленное из ряда возрастающих цифр, мы, как легко понять, должны получить ряд убывающих цифр 98765.


Задача № 36

Вот, наконец, третья числовая пирамида, также требующая объяснения:


Решение

Эта пирамида есть прямое следствие первых двух. Связь устанавливается очень легко. Из первой пирамиды мы знаем уже, что, например:

12345 x 9 + 6 = 111111.

Умножив обе части на 8, имеем:

(12345 x 8 x 9) + (6 x 8) = 888888.

Но из второй пирамиды мы знаем, что

12345 x 8 + 5 = 98765, или 12345 x 8 = 98760.

Значит:

888888 = (12345 x 8 x 9) + (6 x 8) = (98760 x 9) + 48 = (98760 x 9) + (5 x 9) + 3 = (98760 + 5) x 9 + 3 = 98765 x 9 + 3.

Вы убеждаетесь, что оригинальные числовые пирамиды не так уже загадочны, как кажутся с первого взгляда. Курьезно, что мне случилось как-то видеть их напечатанными в одной немецкой газете с припиской: «Причина такой поразительной закономерности никем еще до сих пор не была объяснена»…


Девять одинаковых цифр


Задача № 37

Конечная строка первой из сейчас (стр. 215) рассмотренных «пирамид»:

12345678 x 9 + 9 = 111111111

представляет образчик целой группы интересных арифметических курьезов, собранных в нашем музее в следующую таблицу:

Откуда такая закономерность в результатах?


Решение

Примем во внимание, что

12345678 x 9 + 9 = (12345678 + 1) x 9 = 12345679 x 9.

Поэтому

12345679 x 9 = 111111111.

А отсюда прямо следует, что

12345679 x 9 x 2 = 222222222

12345679 x 9 x 3 = 333333333

12345679 x 9 x 4 = 444444444 и т. д.


Цифровая лестница


Задача № 38

Что получится, если число 111111111, с которым мы сейчас имели дело, умножить само на себя? Заранее можно предвидеть, что результат должен быть диковинный, - но какой именно?


Решение

Если вы обладаете способностью отчетливо рисовать в воображении ряды цифр, вам удастся найти интересующий нас результат, даже не прибегая к выкладкам на бумаге. В сущности здесь дело сводится только к надлежащему расположению частных произведений, потому что умножать приходится все время лишь единицу на единицу - действие, могущее затруднить разве лишь Фонвизинского Митрофанушку, размышляющего о результате умножения «единожды один». Сложение же частных произведений сводится к простому счету единиц[66]. Вот результат этого единственного в своем роде умножения (при выполнении которого, впрочем, не приходится ни разу прибегать к действию умножения):

Все девять цифр выстроены в стройном порядке, симметрично убывая от середины в обе стороны.


* * *

Те из читателей, которых утомило обозрение числовых диковинок, могут покинуть здесь эту галерею и перейти в следующие отделения, где показываются фокусы и выставлены числовые великаны и карлики; я хочу сказать, - они могут прекратить чтение этой главы и обратиться к дальнейшим. Но кто желает познакомиться еще с несколькими интересными достопримечательностями мира чисел, тех приглашаю осмотреть со мною небольшой ряд ближайших витрин.



Магические кольца


Задача № 39

Что за странные кольца выставлены в следующей витрине нашей галереи? Перед нами (см. рис. след. стр.) три плоских кольца, вращающихся одно в другом. На каждом кольце написаны шесть цифр в одном и том же порядке, иначе говоря - написано одно и то же число: 142857. Эти кольца обладают следующим удивительным свойством: как бы ни были они повернуты, мы при сложении двух написанных на них чисел - считая от любой цифры в направлении начерченной стрелки - во всех случаях получим то же самое шестизначное число (если только результат вообще будет 6-ти значный), лишь немного подвинутое! В том положении, например, какое изображено на прилагаемом чертеже, мы получаем при сложении двух наружных колец:

т. е. опять-таки тот же ряд цифр: 142857, только цифры 5 и 7 перенеслись из конца в начало.

При другом расположении колец относительно друг друга мы имеем такие случаи:

Исключение составляет единственный случай, когда в результате получается 999999.

Мало того. Тот же ряд цифр в той же последовательности мы получим и при вычитании чисел, написанных на кольцах. Например:

Исключение составляет случай, когда приведены к совпадению одинаковые цифры - тогда, разумеется, разность равна нулю.

Но и это еще не все. Умножьте число 142857 на 2, на 3, на 4, на 5 или на 6 - и вы получите снова то же число, лишь передвинутое, в круговом порядке, на одну или несколько цифр:

Чем же обусловлены все загадочные особенности этого числа?


Решение

Мы нападаем на путь к разгадке, если продлим немного последнюю табличку и попробуем умножить наше число на 7: в результате получится 999999. Значит, число наше - не что иное, как седьмая часть 999999, а, следовательно, дробь И действительно, если вы станете превращать 1/7 в десятичную дробь, вы получите:


Яков Перельман читать все книги автора по порядку

Яков Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математика для любознательных отзывы

Отзывы читателей о книге Математика для любознательных, автор: Яков Перельман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.