30
14. Ст. Джевонс. Основы науки. Трактат о логике и научном методе. Спб, 1881, с. 2. В этой книге читатель найдет подробное и очень доступное изложение алгебры логики Джевонса — теории, в которой впервые в логике фактически присутствовало то, что ныне называется булевой алгеброй (см. следующую главу). В нашем изложении мы несколько изменили символику Джевонса, приблизив ее к современной. Примеры, которыми мы оперируем, принадлежат Джевонсу.
15. Операция пересечения двух произвольных классов (множеств) — это операция, порождающая такой класс — его обычно обозначают А ∩ В или просто AВ, как в нашей записи, который состоит из элементов, входящих как в класс A, так и в класс В. В дальнейшем будут использоваться также понятия объединения двух классов и дополнения к классу. Операцией объединения произвольных классов A и В называется операция, порождающая такой класс (он обозначается через A ∪ В), который состоит из элементов, входящих хотя бы в один из классов: в A или в В.
Операция взятия дополнения к произвольному классу A (до некоторого объемлющего универсального класса, или универсума, V) есть операция, порождающая класс, состоящий из всех тех и только тех) элементов универсума, которые не входят в класс А; дополнение к А обозначается через A' или -A. Заметим, что операции пересечения и объединения классов обладают свойством коммутативности (перестановочности, симметричности), то есть А ∩ В = В ∪ А, А ∪ В = В ∩ А (это свойство используется ниже в примере 3).
16. Действительно, по закону исключенного третьего:
A = AB ∪ AB' = ABC ∪ ABC' ∪ AB'C ∪ AB'C', A' = A'B ∪ A'B' = А'ВС ∪ А'ВС' ∪ AВ'С ∪ А'В'С' но, как очевидно, A ∪ A' = V.
1. G. Вооlе. The Mathematical Analysis of Logic. Cambridge and London, 1847; G. Вооlе. An Investigation of the Laws of Thought. London, 1854.
2. Е. Т. Веll. Men of Mathematics. New York. 1962, p. 433. О своеобразии английской математики того времени, объясняющем тот факт, что математическая логика возникла в Англии, см.: Б. В. Бирюков, А. А. Коноплянки н. Развитие логико-математических идей как элемент исторической подготовки кибернетики (на примере развития английской науки в 19 и начале 20 вв.).— «Вестник истории мировой культуры», 1961, № 6 (30).
3. Формулы вида (а & β) и (а V β) мы будем называть соответственно конъюнктивной и дизъюнктивной формулами (или формами, когда появится понятие формы), иногда же просто «конъюнкциями» и «дизъюнкциями».
4. Метазнак (греч. «мета» — за, после) — знак, обозначающий знак или конструкцию из знаков данного алфавита и не принадлежащий к этому алфавиту. В данном случае метазнаки обозначают произвольные формулы.
5. Строгое определение цепочки равенств выглядит следующим образом: а) каждое равенство есть (одночленная) цепочка равенств;
б) если Х — цепочка равенств, в которой последней формулой справа является формула φ и φ=χ;, то Х=χ — тоже цепочка равенств:
в) Других цепочек равенств, кроме устанавливаемых на основе пп. а) и б), не имеется.
6. Этот список постулатов основан на перечне равносильностей алгебры высказываний, приведенных в кн.: П. С. Новиков. Элементы математической логики. М.» 1973. с. 42.
7. Название связано с тем, что в математической логике законы 9 и 10 впервые сформулировал Де Морган. Однако соответствующие правила были известны уже средневековым логикам.
8. Вместо этого «общего» правила замены равным в число постулатов можно было бы ввести более «конкретное» правило: если а = β то (γ & а) = (γ & β). (а & γ) = (β & γ); (γ V а) = (γ V β), (а V γ)-(β V γ)» ~а= ~β. «Общее» правило замены равным оказывается в этом случае производным правилом: его можно обосновать с помощью «конкретного» правила замены равным.
9. Обращаем внимание на то, что мы не стремимся к независимости постулатов нашего аппарата. Например, свойство рефлексивности отношения равенства оказывается в данном построении производным от свойств симметричности и транзитивности этого отношения и каждой из схем аксиом 7, 8, 11—15. Со свойствами отношения равенства можно подробнее ознакомиться по кн.: А. Тарский. Введение в логику и методологию дедуктивных наук. М., 1948, с. 90 и далее. О философских вопросах, связанных в равенством и отождествлением, см: Д. П. Горский. Вопросы абстракции и образование понятий. М., 1961.
10. То есть (а → β) ≝ (~а V β), где ≝ есть знак «равенства выражений по определению» («графического» их совпадения). Мы будем считать, что к равенствам по определению тоже применимы правила [b] (ср. ниже с. 64—65 и 69—70).
11. Различного рода исчисления равенств оказываются весьма полезным инструментом во многих разделах логики и оснований математики (ср. кн.: Р. Л. Гудстеин. Рекурсивный математический анализ. М., 1970, в которой исчисление равенств используется для построения и исследования фрагментов конструктивной математики; о конструктивном направлении в математике см. ниже, гл. 5 и далее). Систематическое представление различных логических систем в виде соответствующих исчислений равенств было осуществлено Г. И. Сыркиным в его курсах лекций «Алгебраические методы в логике», читанных на философском факультете МГУ в 1974—1975 гг. 1
12. Столбцы для аргументов от остальной части таблицы мы отделяем двойной вертикальной чертой. Обращаем внимание на то, что фигурирующие в таблицах 0 и 1 не следует смешивать с константами 0 и 1.
13. С учетом интерпретации констант 0 и 1, которая будет дана ниже.
14. Мы не останавливаемся на некоторых деталях определения;
понятия «верные равенства формул», отсылая читателя к книге П. С. Новикова, указанной в примечании 6.
В этой книге говорится, правда, об отношении «равносильности» формул, но это по существу то же, что мы имеем в виду под совпадением функций (точнее, впрочем, то же, что в следующей интерпретации окажется равенством или равносильностью форм высказываний).
15. Вместо слов «формула а при данных значениях своих переменных переходит в истинное (или ложное) высказывание» мы будем употреблять и такое выражение: «формула а принимает такое-то (истинностное) значение», а также говорить: «формула а истинна (ложна)».
16. В связи с данной интерпретацией заметим, что со знаками → и ≡ можно было с самого начала поступить иначе: не вводить их определениями (как сокращения), а включить в сам язык формальной системы — в ее алфавит (расширив соответствующим образом пункт I в)). Это приведет к расширению понятия формулы и добавлению к системе постулатов схем аксиом для → и ≡. А именно, в пункт II (в) добавляется- «если а и β — формулы, то (а → β) и (а ≡ β) — тоже формулы», а к системе постулатов IV[a] присоединяются: 18. (а → β) = (~а V β) и 19. (а ≡ β) = (~а V β) & (а V ~β)). Пункт V при этом должен быть удален.
17. Ср. формулировку этих законов у Джевонса (с. 43). Очевидно, что способ «формульного» представления этих законов зависит от характера рассматриваемого логического аппарата.
рис. 7. Круговые схемы, изображающие пять возможных отношений между двумя произвольными классами а и β.
18. Аналогично, в школьной математике не пишут, скажем, ((а+b)+с)+d или (а+b)+(с+d) а записывают просто а+b+с+d.
19. Эрнет Шредер (E. Schroder, 1841—1902) является автором трехтомных «Лекций по алгебре логики» (Vorlesungen uber die Logik. Bd. 1-3, Leipzig, 1890—1905), знаменующих собой — вместе с трудами русского логика и астронома П. С. Порецкого (1846—1907) — вершину развития алгебры логики в прошлом столетии. Задача, которая приводится ниже, заимствована из первого тома «Лекций». Эту задачу приводила в своих лекциях по математической логике в Московском университете С. А. Яновская; мы приводим задачу в ее формулировке.
20. Впрочем, операции булевой алгебры можно задавать указанием и других наборов их свойств. О булевых алгебрах см., например:
И. М. Яглом. Алгебра Буля.— В сб.: «О некоторых вопросах современной математики и кибернетики». М., 1965.
21. Напоминаем, что здесь высказывание понимается «классически», то есть как выражение либо истинное, либо ложное, но не то и другое вместе.
22. При другом подходе булевой алгеброй для логической интерпретации нашего аппарата можно считать множество форм высказываний (рассматриваемых с точностью до отождествления равносильных форм) вместе с заданными на них операциями ~, &. V - такая булева алгебра высказываний оказывается алгеброй Линденбаума — Тарского, о которой см.: Е. Расёва, Р. Сикорскии. Математика метаматематики. М., 1972, с. 282 и далее.