My-library.info
Все категории

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Сборник задач по математике с решениями для поступающих в вузы
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
197
Читать онлайн
Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы краткое содержание

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы - описание и краткое содержание, автор Альберт Рывкин, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.

Сборник задач по математике с решениями для поступающих в вузы читать онлайн бесплатно

Сборник задач по математике с решениями для поступающих в вузы - читать книгу онлайн бесплатно, автор Альберт Рывкин

3.36. Одна из сторон плоского четырехугольника равна √5/2. Его проекции на грани прямого двугранного угла — квадраты со стороной 1. Докажите, что четырехугольник лежит в плоскости, параллельной биссекторной плоскости двугранного угла, и найдите его периметр.

3.37. Докажите, что объем правильной пирамиды меньше куба ее бокового ребра.

3.38. Два шара, отношение радиусов которых равно p, касаются друг друга внешним образом. Они помещены внутри конуса так, что центры их находятся на оси конуса; при этом первый шар касается боковой поверхности конуса, а второй — боковой поверхности и основания конуса. Найдите отношение суммы площадей поверхностей этих шаров к площади полной поверхности конуса.

3.39. Сфера вписана в прямой круговой конус с углом α при вершине осевого сечения. В эту сферу вписан конус с таким же углом при вершине осевого сечения. Найдите угол α, если отношение объема первого конуса к объему второго конуса равно а. При каких значениях а задача имеет решение?

3.40. Дана правильная треугольная пирамида SABC (S — вершина) со стороной основания а и боковым ребром b. Одна сфера с центром в точке O1 касается плоскостей SAB и SAC в точках B и C, а другая сфера с центром в точке О2 касается плоскостей SAC и SBC в точках A и B. Найдите объем пирамиды SO1BO2.

3.41. В конус помещены пять равных шаров. Четыре из них лежат на основании конуса, причем каждый из этих четырех шаров касается двух других, лежащих на основании, и боковой поверхности конуса. Пятый шар касается боковой поверхности конуса и остальных четырех шаров. Найдите объем конуса, если радиусы шаров равны r.

3.42. В основании четырехугольной пирамиды SABCD лежит квадрат ABCD со стороной а. Ребро SD = h перпендикулярно к плоскости основания. Внутри пирамиды лежит цилиндр так, что окружность одного его основания вписана в треугольник SCD, а окружность другого касается грани SAB. Найдите высоту цилиндра.

3.43. В конус вписан куб так, что одно его ребро лежит на диаметре основания конуса, вершины куба, не принадлежащие этому ребру, лежат на боковой поверхности конуса, а центр куба лежит на высоте конуса. Найдите отношение объема конуса к объему куба.

3.44. В правильную усеченную треугольную пирамиду вписан шар радиусом r. Боковое ребро пирамиды равно стороне меньшего основания. Найдите объем пирамиды.

3.45. Два шара радиусом r и один шар радиусом R (R > r) лежат на плоскости, касаясь друг друга внешним образом. Найдите радиус шара, касающегося всех шаров и плоскости.

3.46. Два равных шара касаются друг друга и граней двугранного угла. Третий шар меньшего радиуса также касается граней этого двугранного угла и обоих данных шаров. Дано отношение m радиуса меньшего шара к радиусу одного из равных шаров. Найдите величину α двугранного угла. Каким должно быть m, чтобы задача имела решение?

3.47. На плоскости P стоит равносторонний конус, высота которого 10 см. Каждый из трех равных шаров, лежащих на плоскости P вне конуса, касается двух других шаров и боковой поверхности конуса. Найдите радиус шаров.

3.48. На плоскости уложены n равных конусов, имеющих общую вершину в точке, лежащей на этой плоскости. Каждый конус касается двух других конусов. Найдите угол при вершине конуса в осевом сечении.

3.49. Ребро правильного тетраэдра ABCD равно а. На ребре AB, как на диаметре, построена сфера. Найдите радиус сферы, вписанной в трехгранный угол A тетраэдра, если известно, что она касается построенной сферы и ее центр лежит на высоте тетраэдра.

3.50. Правильная пирамида, в основании которой лежит квадрат со стороной а, вращается вокруг прямой, проходящей через ее вершину и параллельной стороне основания. Вычислите объем тела вращения, если плоский угол при вершине пирамиды равен α.

3.51. Полная поверхность конуса в два раза больше поверхности вписанного в него шара. Определите отношение объема конуса к объему шара.

3.52. В основании произвольной (не обязательно прямой) призмы лежит правильный треугольник. Высота призмы равна H. Площади двух боковых граней равны S1, а площадь третьей равна S2. Найдите сторону основания. Исследуйте решение.

3.53. Найдите способ, позволяющий вписать в куб сразу четыре пирамиды: две треугольные и две четырехугольные — так, чтобы их суммарный объем был наибольшим.

3.54. Основанием треугольной пирамиды SABC служит правильный треугольник ABC со стороной 6. Высота пирамиды, опущенная из вершины S, равна 4, а основание этой высоты принадлежит основанию ABC, включая его границу. Около пирамиды описали шар радиусом R. Найдите наименьшее возможное значение R, удовлетворяющее условиям задачи[1].

Глава 4

Геометрические задачи на проекционном чертеже

Умение правильно построить сечение по трем точкам упрощает решение некоторых геометрических задач.

Прежде чем приступать к решению задач этой главы, разберите несколько примеров на построение сечений и теней.


Пример 1. Построить сечение куба, проходящее через точки PQ и R, расположенные так, как показано на рис. 4.1.

Точки P и Q (и точки Q и R) можно соединить сразу, так как они лежат в одной из граней куба.

Чтобы построить прямую, по которой плоскость сечения пересечет нижнее основание куба (эта прямая называется следом), нужно знать две точки, принадлежащие этой прямой. Одна точка нам дана — это точка R. Другую точку найдем, если продолжим до пересечения отрезки DC и PQ. Это можно сделать, так как указанные отрезки лежат в одной плоскости и, как видно из рис. 4.1, не параллельны. Полученная в результате точка S будет лежать в плоскости нижнего основания, так как вся прямая DC лежит в этой плоскости.

Через точки R и S мы теперь проведем след, который оставит плоскость сечения на плоскости нижнего основания. В результате получим точку T. После того как точки T и P соединены, сечение построено.

Несколько усложним задачу.


Пример 2. Построить сечение куба, проходящее через точки P, Q и R, расположенные так, как показано на рис. 4.2.

В этом случае одной вспомогательной точки окажется недостаточно. Хотя из рис. 4.2 видно, что сечение не пересечет плоскость нижнего основания, нужно построить след плоскости сечения на нижнем основании. Точку S мы построим так же, как в примере 1, а вторую точку T найдем, продолжив отрезки RQ и AD. След ST пересечет прямую BC в точке U. Так как точки U и P лежат в плоскости сечения, то, соединив их, найдем точку V, принадлежащую сечению куба, которая позволит завершить построение.


Пример 3. Построить сечение куба, проходящее через точку R, расположенную на передней грани куба, и точки P и Q — на ребрах задней его грани (рис. 4.3).

И на этот раз нам поможет построение следа плоскости сечения на плоскости нижнего основания. Чтобы было ясно, что точка R лежит на плоскости передней грани куба, спроецируем ее на основание. Проекция прямой PR и прямая PR пересекутся в точке S, принадлежащей следу. Вторую точку U следа мы получим, продолжив до пересечения BC и PQ. След US пересечет куб по отрезку . Продолжим  TR до пересечения с DD1 в точке G. Чтобы закончить построение, получим еще одну вспомогательную точку F так, как это было сделано в первом примере.

Построение теней осуществляется с помощью тех же самых приемов. При этом нужно в качестве вспомогательной точки использовать проекцию источника света на плоскость, на которую падает тень.


Альберт Рывкин читать все книги автора по порядку

Альберт Рывкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Сборник задач по математике с решениями для поступающих в вузы отзывы

Отзывы читателей о книге Сборник задач по математике с решениями для поступающих в вузы, автор: Альберт Рывкин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.