Обратимся теперь к решению задачи 12. Рассмотрим два произвольных комитета — комитет 1 и комитет 2. Обозначим через U множество всех тех обитателей лечебницы, чьи злейшие враги объединены в комитет 1, а через V — множество всех тех обитателей, чьи лучшие друзья принадлежат комитету 2. Согласно утверждению 4, множества U и V представляют собой комитеты. Тогда в соответствии с утверждением 5 некий обитатель, назовем его Дэн, близкий друг которого, назовем его Эдвард, полагает, что Дэн входит в группу U, а злейший враг которого, назовем его Фрэд, считает, что Дэн состоит в V. Итак, Эдвард считает, что Дэн принадлежит комитету U, а Фрэд уверен, что Дэн входит в комитет V. Наконец, по определению множества U утверждение о том, что Дэн входит в U, равносильно утверждению о том, что его злейший враг Фрэд состоит в комитете 1. Другими словами, утверждения «Дэн входит в U» и «Фрэд состоит в комитете 1» либо оба истинны, либо оба ложны. Поскольку Эдвард принимает за истину одно из них, а именно, что Дэн входит в U, то он должен также принять на веру и другое, а именно что Фрэд состоит в комитете I (вспомним тут наше вспомогательное правило). Итак, Эдвард считает, что Фрэд состоит в комитете 1.
С другой стороны, сам Фрэд полагает, что Дэн входит в комитет V. Но при этом Дэн состоит в V только в том случае, если его друг Эдвард входит в комитет 2 (по определению V). Иными словами, два этих утверждения либо оба истинны, либо оба ложны. Тогда, поскольку Фрэд полагает, что Дэн входит в V, он (Фрэд) должен считать, что Эдвард состоит в комитете 2.
Таким образом, мы имеем двух обитателей, Эдварда и Фрэда, каждый из которых убежден в следующей Эдвард — что Фрэд входит в комитет 1, а Фрэд — что Эдвард состоит в комитете 2. Это и есть решение задачи 12.
Для решения задачи 10 выберем в качестве комитета 1 множество всех пациентов, а в качестве комитете множество всех врачей — эти комитеты существуют согласно условиям 1 и 2. В соответствии с решений задачи 12 существуют два обитателя лечебницы — Эдвард и Фрэд, которые уверены в следующем: Эдвард — в том, что Фрэд входит в составленный из пациентов комитет 1, а Фрэд — в том, что Эдвард входит в составленный из врачей комитет 2. Другими словами, Эдвард считает, что Фрэд является пациентом, а Фрэд уверен, что Эдвард — врач. Тогда, следуя решению задачи 1 (заменив лишь имена Джонс и Смит на Эдвард и Фрэд), мы находим, что один из названых обитателей, то есть Эдвард или Фрэд (кто именно, не известно), должен оказаться либо лишившимся рассудка врачом, либо находящимся в здравом уме пациентом. Ясно, что в любом из этих случаев ситуация в лечебнице будет явно ненормальной.
Обращаясь теперь к задаче 11, предположим, все находящиеся в здравом уме обитатели лечебницы все ее обитатели, лишившиеся рассудка, также составляют собой комитеты, а именно комитеты 1 и 2 соответственно. Тогда, согласно полученному только что решению задачи 12, обитатели Эдвард и Фрэд будут уверены в следующем:
а) Эдвард — в том, что Фрэнк находится в здравом уме, или, иными словами, что состоит членом комитета 1;
б) Фрэд — в том, что Эдвард лишился рассудка, а значит, состоит членом комитета 2.
Но это невозможно, так как если Эдвард является нормальным человеком, то его убеждения истинны, а это значит, что Фрэд находится в здравом уме. Следовательно, убеждения Фрэда истинны, а это свою очередь означает, что Эдвард лишился рассудка. Таким образом, мы получаем, что Эдвард должен быть одновременно и нормальным, и лишившимся рассудка человеком, что невозможно. С другой стороны, если Эдвард оказывается безумным, то его мнение поводу Фрэда оказывается ложным, а это значит, что Фрэд лишился рассудка. Тогда убеждения Фрэда относительно Эдварда также оказываются ложными, откуда следует, что Эдвард находится в здравом уме. Таким образом, мы имеем, что Эдвард опять должен быть одновременно и нормальным человеком, и безумным, что невозможно. Значит, допущение о том, что множество находящихся в здравом уме и множество безумных обитателей данной лечебницы представляют собой комитеты, приводит к явному противоречию. Следовательно, невозможно, чтобы обе эти группы были комитетами.
13. Вот что, к своему ужасу, понял Крейг: в последней лечебнице все врачи безумны, а все пациенты — нормальные люди! Инспектор пришел к этому выводу путем следующих рассуждений.
Еще до того, как Крейг сумел побеседовать с доктором Смоллем и профессором Перро, ему стало известно то, что в больнице имеется по крайней мере один нормальный обитатель А. Обозначим теперь через В близкого друга А. Согласно условию С, если А считает, что В является оригиналом, тогда близкий друг этого А уверен, что В — пациент. Поскольку В является близким другом этого А, тогда если А полагает, что В- оригинал, то сам В уверен, что является пациентом. Другими словами, если А считает, что В — оригинал В оказывается чудаком. Поскольку А — нормальный человек, то уверенность А в том, что В — оригинал эквивалентна утверждению, что В — на самом оригинал. Таким образом, мы имеем следующее ключевое наблюдение:
Если В оригинал, то В — чудак.
Итак, В — либо чудак, либо нет. Если В — чудак, то он уверен, что является пациентом, и, следовательно (смотри задачу 4), В должен быть либо лишившимся рассудка врачом, либо находящимся в здравом уме пациентом; в любом случае ему никак не следует находиться в больнице. Допустим теперь, что В не является чудаком. Что мы имеем тогда? Ясно, что если В не чудак, то он не будет также и оригиналом, поскольку в соответствии с ключевым наблюдением В может оказаться оригиналом только в том случае, если он является также и чудаком. Поэтому В не может быть ни оригиналом, ни чудаком. Далее, поскольку В не является оригиналом, то предположения о том, что все пациенты считают его чудаком, и о том, что ни один из врачей его чудаком не считает, не могут быть справедливы одновременно; значит, по крайней мере одно из них должно оказаться ложным. Допустим, что ложно первое из них. Тогда найдется по крайней мере один пациент Р, который не считает, что В — чудак. Если бы Р находился не в своем уме, то он был бы уверен, что В — чудак (поскольку В им не является). Следовательно, Р — нормальный человек. В свою очередь это означает, что Р — пациент, находящийся в здравом уме. Если же второе предположение оказывается ложным, тогда по крайней мере один врач, назовем его D, считает, что В — чудак. При этом D должен быть безумным (поскольку В — чудак), и, следовательно, D является врачом, лишившимся рассудка.
Подведем итоги. Если В — чудак, то он либо нормальный пациент, либо безумный врач. Если он не чудак, то либо какой-нибудь нормальный пациент Р не верит, что В чудак, либо какой-нибудь безумный врач D верит в это. Следовательно, в лечебнице есть либо совершенно нормальный пациент, либо врач, лишившийся рассудка.
Как я уже упоминал, Крейг догадался обо всем этом еще до встречи с доктором Смоллем и профессором Перро. Далее, из разговора с ними инспектор выяснил, что доктор Смолль считает, будто все врачи в лечебнице — нормальные люди, а профессор Перро уверен, что все их пациенты безумны. Оба одновременно они не могут быть правы (как мы только что доказали); следовательно, по крайней мере один из них сошел с ума. Кроме того, профессор Перро полагает, что доктор Смолль является нормальным человеком. Значит, если сам профессор Перро находится в здравом уме, то он должен быть прав, и доктор Смолль действительно находится в здравом уме, хотя, как нам известно, это вовсе не так. Следовательно, профессор Перро должен быть безумным. При этом его уверенность в том, что доктор Смолль психически здоров, оказывается ложной, откуда сразу следует, что доктор также безумен. Данное рассуждение показывает нам, что и доктор Смолль, и профессор Перро оба лишились рассудка.
Теперь, поскольку доктор Смолль безумен и считает, что по крайней мере один из пациентов сошел с ума, то это означает, что на самом деле все пациенты в лечебнице должны быть нормальными людьми. Аналогичным образом, поскольку профессор Перро тоже является безумным и уверен, что, по крайней мере, один из врачей находится в здравом уме, то все врачи должны быть безумными. Таким образом, нами доказано, что все пациенты в данной лечебнице — нормальные люди, а все врачи сошли с ума.
Примечание. Эта задача, конечно же, была подсказана мне сюжетом известного рассказа Эдгара Аллана По «Система доктора Смолля и профессора Перро», в котором пациенты некоего сумасшедшего дома захватили врасплох всех своих врачей и надзирателей, вымазали их в смоле, вываляли в перьях и заперли в больничных палатах, а сами стали играть их роли.
Инспектор Крейг в Трансильвании
Неделю спустя после описанных приключений Крейг уже стал было собираться в Лондон, как вдруг ему вручили телеграмму от правительства Трансильвании, в которой инспектора в срочном порядке приглашали посетить эту страну, с тем чтобы помочь в расследовании нескольких загадочных случаев, связанных с вампирами, или упырями. Как уже разъяснялось в моей предыдущей книжке логических головоломок под названием «Как же называется эта книга?», одну часть населения Трансильвании составляют люди, а другую — упыри, причем люди всегда говорят правду, а упыри всегда лгут. Ситуация в этой стране крайне осложняется еще и тем, что половина всех жителей Трансильвании лишена рассудка и придерживается совершенно превратных представлений об окружающем их мире (точно так же, как и безумные обитатели психиатрической лечебницы доктора Смолля и профессора Перро): так, все истинные суждения они считают ложными, а все ложные утверждения — истинными. Другая половина жителей психически здорова и абсолютно безупречна в своих суждениях (совершенно так же, как нормальные обитатели психиатрических лечебниц в главе 3), а именно: все истинные утверждения, по их мнению, являются истинными, про ложные же утверждения они знают, что те ложны.