My-library.info
Все категории

Рудольф Рэфф - Эмбрионы, гены и эволюция

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Рудольф Рэфф - Эмбрионы, гены и эволюция. Жанр: Педагогика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Эмбрионы, гены и эволюция
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
11 сентябрь 2019
Количество просмотров:
219
Читать онлайн
Рудольф Рэфф - Эмбрионы, гены и эволюция

Рудольф Рэфф - Эмбрионы, гены и эволюция краткое содержание

Рудольф Рэфф - Эмбрионы, гены и эволюция - описание и краткое содержание, автор Рудольф Рэфф, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
В книге американских авторов излагаются факты и идеи о связи генетики, эмбриологии и эволюции. Основное внимание уделено представлению о том, что эволюция идет по преимуществу путем отбора значительных перестроек морфологии, обусловленных мутациями регуляторных генов.Для специалистов по молекулярной биологии, эмбриологов, генетиков, эволюционистов, для студентов и преподавателей биологических факультетов.

Эмбрионы, гены и эволюция читать онлайн бесплатно

Эмбрионы, гены и эволюция - читать книгу онлайн бесплатно, автор Рудольф Рэфф

Сравнение скоростей эволюции нуклеотидных последовательностей нескольких разных типов показало, что справедливо первое предположение. Росбаш, Кампо и Гаммерсон (Rosbash, Campo, Gummerson) в экспериментах по гибридизации ДНК мышей и крыс установили, что последовательности, комплементарные суммарной мРНК, дивергировали вдвое медленнее, чем суммарная уникальная ДНК. Дело в том, что преобладающая часть последовательностей, содержащихся в уникальной ДНК, никогда не транскрибируется в мРНК, и тем самым она, по-видимому, свободна от некоторых из тех ограничений, которые налагаются на структурные гены. Подобным же образом Хольмквист (Holmquist), Джукс (Jukes) и Пэнгберм (Pangburm), а также Хори (Hori), используя прямые данные секвенирования для тРНК и 5S-PHK, установили, что эти молекулы, участвующие в синтезе белка, эволюционировали довольно медленно, со скоростью примерно 0,2·10 -9 замен на нуклеотид в год, что составляет одну десятую часть средней скорости эволюции всего генома.

Наибольшего внимания заслуживают, пожалуй, работы Кафатоса (Kafatos) и его сотрудников, которые сравнивали последовательности в глобиновых мРНК человека и кролика, чтобы выяснить, эволюционируют ли все участки рассматриваемой последовательности с одинаковой скоростью и приближаются ли некоторые из этих скоростей к частоте замены нуклеотидов, ожидаемой для нейтральной эволюции. Если бы скорости эволюции последовательностей, содержащихся в глобиновых мРНК, были «нейтральными», т.е. определялись главным образом частотой мутаций, поскольку роль отбора в нейтральной эволюции незначительна, то эта скорость была бы, вероятно, близка к скорости, наблюдаемой в гипервариабельных участках фибринопептидов. Фактически Кафатос и его сотрудники обнаружили, что частоты как непроявляющихся мутаций, так и мутаций, приводящих к аминокислотным заменам, гораздо ниже. Частоты замен варьировали в зависимости от участка сравниваемых мРНК. Например, некодирующая 5'-последовательность эволюционировала с такой же скоростью, как и все кодирующие последовательности, тогда как некодирующая З'-последовательность эволюционировала быстро. В участках, кодирующих критически важные участки белка, которые определяют взаимодействия с геном, эффект Бора, контакты α- β-цепей, аминокислотных замен не происходит, а скорость непроявляющихся нуклеотидных замен очень низка. В отличие от этого в участках, где замены аминокислот происходят, замены нуклеотидов осуществляются быстрее. Совершенно очевидно, что непроявляющиеся замены нуклеотидов не обязательно должны быть нейтральными.

Заключение о том, что скорость молекулярных часов определяется не каким-то одним фактором, а представляет собой среднее из нескольких скоростей, отражающих разнообразные уровни отбора, не снижает их полезности при построении молекулярных филогении. На рис. 3-3 и 3-4 представлены два примера эволюционного древа белков - цитохрома с и миоглобина. Средние скорости эволюции этих двух белков различны, а поэтому их можно использовать для отображения эволюционных событий, происходивших в совершенно различных временных масштабах. Миоглобин должен был эволюционировать достаточно быстро, поскольку в различных отрядах плацентарных млекопитающих, дивергенция которых началась в конце мелового периода, он представлен в достаточно сильно различающихся формах. Поэтому миоглобин - идеальный белок для построения молекулярной филогении млекопитающих. Цитохром с, эволюция которого протекала медленнее, может быть использован для того, чтобы проследить гораздо более широкий и древний комплекс родственных связей - связи между царствами, типами и классами эукариот. При построении филогенетических схем белков определяют наименьшее число замен нуклеотидов, необходимое для возникновения наблюдаемого в процессе эволюции различия между близкими аминокислотными последовательностями. На схеме длина ветвей, соединяющих любые две последовательности, должна быть пропорциональна числу мутационных событий, создающих различия между этими последовательностями. В целом эти белковые филогении достаточно хорошо соответствуют обычным филогенетическим схемам, при построении которых используются классические сравнительно-анатомические, эмбриологические и палеонтологические методы.

Рис. 3-3. Филогенетическое древо цитохромов с эукариот. Представлены аминокислотные последовательности следующих видов: 1-Tetrahymena pyriformis; 2-Crithidia fasciculata; 3-C. oncopelti; 4-Euglena gracilis; 5-головня; 6-пекарские дрожжи; 7-Candida sp.; 8-тунец; 9-курица; 10-человек; 11-плодовая мушка; 12-креветка; 13-улитка; 14-морская звезда; 15-Eisenia foetida; 16-Ginkgo biloba; 17-бузина; 18-пшеница (Schwartz, Dayhoff, 1978).


Рис. 3-4. Филогенетическое древо миоглобинов млекопитающих. Представлены аминокислотные последовательности следующих видов: 1-утконос; 2-кенгуру; 3-опоссум; 4-человек, павиан и игрунка; 5-еж; 6-собака и барсук; 7-морской лев и тюлень; 8-галаго; 9-толстый лори; 10-тупайя; 11-кролик; 12-тонкотелый маки; 13-дельфины и киты; 14-лошадь; 15-корова, свинья и овца (Hunt, Hurst-Calderonc, Dayhoff, 1978).

Структурные гены и регуляторы в эволюции

Белковые филогении, однако, не всегда совпадают с морфологическими филогениями. Например, аминокислотные последовательности цитохрома с, как это видно на рис. 3-3, распадаются на четко разграниченные ветви, соответствующие царствам простейших, грибов, растений и животных; обособлены также последовательности, относящиеся к разным типам животных. Кольчатые черви, моллюски, ракообразные, как следовало бы ожидать на основании классических подходов к филогении, образуют группу типов, отличающихся от позвоночных. Однако иглокожим на этом цитохромном древе соответствует одна из боковых ветвей кольчатых червей, что противоречит эмбриологическим данным, согласно которым иглокожие близки к хордовым (см. рис. 4-1). Сходные затруднения возникают также при рассмотрении миоглобинового древа (рис. 3-4). Расположение на нем большинства групп в разумных пределах согласуется с палеонтологическими и морфологическими данными, по лори и лемуры занимают несколько неожиданные места. По своему строению эти формы относятся к приматам, однако по аминокислотным последовательностям миоглобина они не ближе к высшим приматам, чем собаки или кролики. Это последнее экстраординарное заключение вряд ли правильно, поскольку общепринятая филогения основана на гораздо большем числе признаков, чем продукт одного гена. Общее соответствие филогении, построенных на основе молекулярных и морфологических критериев, объясняется, вероятно, длительным усреднением скоростей как морфологической, так и молекулярной эволюции. Несоответствие же может быть результатом вариаций либо скорости эволюции данного белка, либо скорости морфологической эволюции какой-либо определенной линии.

Вариации в скоростях эволюции белков, по-видимому, особенно велики в период возникновения новых функций. Белки, функции которых вполне сложились, эволюционируют с точностью часового механизма, и их можно поэтому использовать для определения молекулярных филогении. Однако в период становления функции какого-либо нового белка его эволюция, очевидно, отклоняется от точного хода молекулярных часов. Если скорость эволюции глобина экстраполировать в прошлое, как это сделано на рис. 3-1, то дивергенция глобинов приходится на поздний докембрий, т.е. на гораздо более раннее время, чем появление первых остатков Metazoa в палеонтологической летописи. Так, при этом получается, что глобин миног дивергировал от глобина насекомых более чем 1000· 106 лет назад, от гемоглобина позвоночных - 800 · 106 лет назад, а гемоглобин от миоглобина 900 · 106 лет назад. Такие экстраполяции, возможно, приводят к сильно завышенным оценкам. В соответствии с палеонтологическими данными Гудман, Мур и Матсуда (Goodman, Moore, Matsuda) предполагают, что эти белки дивергировали позднее: глобин миноги от глобинов насекомых - примерно 700· 10б лет назад, глобин миноги от гемоглобинов позвоночных - примерно 500 · 106 лет назад, а гемоглобины от миоглобинов - также около 500 · 106 лет назад. Дивергенция α- и β-гемоглобинов также произошла примерно 450 · 106 лет назад. Такие оценки сроков дивергенции представляются разумными, потому что древнейшие примитивные хордовые известны из среднего кембрия (примерно 550 · 106 лет назад), а остатки древнейших позвоночных-из позднего кембрия (примерно 500 · 106 лет назад). Из этих пересмотренных оценок сроков дивергенции вытекает, что в период от 500 до 400·106 лет назад скорость эволюции глобинов была гораздо выше, чем впоследствии.

Есть и другие примеры. Наилучший из них - это, вероятно, α-лактальбумин - субъединица лактозосинтетазы молочной железы. α-Лактальбумин сходен по своей аминокислотной последовательности с лизоцимом и, возможно, произошел от лизоцима во время эволюции ранних млекопитающих. Согласно «Атласу аминокислотных последовательностей и структуры белков», ЕЭВ для α-лактальбумина равна примерно 2,3 · 106 лет, тогда как для лизоцима она равна примерно 5 · 106 лет. Если бы эти скорости были постоянными на всем протяжении истории развития двух белков, то, учитывая аминокислотные различия между α-лактальбумином и лизоцимами млекопитающих, α-лактальбумин должен был возникнуть 300 · 106 лет назад - примерно за 100 · 106 лет до того, как в позднем триасе появились первые млекопитающие. Более вероятная альтернатива состоит в том, что α-лактальбумин возник в триасе в качестве одного из элементов комплекса признаков, характеризующих млекопитающих, и на раннем этапе своей истории претерпел период быстрой эволюции.


Рудольф Рэфф читать все книги автора по порядку

Рудольф Рэфф - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Эмбрионы, гены и эволюция отзывы

Отзывы читателей о книге Эмбрионы, гены и эволюция, автор: Рудольф Рэфф. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.