My-library.info
Все категории

Ричард Фейнман - 8a. Квантовая механика I

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Ричард Фейнман - 8a. Квантовая механика I. Жанр: Физика издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
8a. Квантовая механика I
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
166
Читать онлайн
Ричард Фейнман - 8a. Квантовая механика I

Ричард Фейнман - 8a. Квантовая механика I краткое содержание

Ричард Фейнман - 8a. Квантовая механика I - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

8a. Квантовая механика I читать онлайн бесплатно

8a. Квантовая механика I - читать книгу онлайн бесплатно, автор Ричард Фейнман

Весь рассказ о молекуле водорода на самом деле будет зву­чать еще более запутанно, если мы захотим включить в него спины протонов. Тогда уже будет нельзя считать молекулу системой с двумя состояниями. Она скорее должна походить на систему с восемью состояниями — для каждого из наших состояний |1> и |2> возможны четыре различные расстановки спинов так что, пренебрегая спинами, мы слегка упростили дело. Наши окончательные выводы, однако, все равно верны.

Мы нашли, что в низшем энергетическом состоянии молекулы Н2 — единственном связанном состоянии — спины двух электронов противоположны друг другу. Полный спиновый момент количества движения электронов равен нулю. Наоборот, два близких атома водорода с параллельными спинами (и, стало быть, с полным моментом количества движения h) должны нахо­диться в высшем (несвязанном) энергетическом состоянии; атомы будут отталкиваться. Налицо интересная корреляция между спинами и энергиями. Она еще раз иллюстрирует то, о чем мы упоминали раньше: что выходит, будто у двух спинов существует энергия «взаимодействия», потому что случай парал­лельных спинов обладает большей энергией, чем случай спинов антипараллельных. В каком-то смысле можно говорить, что спины стремятся выстроиться в антипараллельное положение и стремясь к этому, обладают потенциалом к высвобождению энергии не из-за того, что там имеется большая магнитная сила, а из-за принципа запрета.

В § 1 мы видели, что связь двух различных ионов посредством одного электрона чаще всего оказывается весьма слабой. При двухэлектронной связи это не так. Представим, что два протона на фиг. 8.4 мы заменили любой парой ионов (с замкнутыми внутренними электронными оболочками и единичным ионным зарядом) и что энергии связи электрона в этих двух ионах раз­личны. Энергии состояний |1> и |2>по-прежнему будут равны друг другу, потому что в каждом из этих состояний имеется по одному электрону на каждый ион. Поэтому у нас всегда будет расщепление, пропорциональное А. Двухэлектронная связь поистине вездесуща — это самая обычная валентная связь. Химическая связь, как правило, предполагает эту игру в «туда-сюда», в которую играют два электрона. Хотя пара атомов может быть связана только одним электроном, это случается сравни­тельно редко, потому что требует надлежащих условий.

Наконец, надо заметить, что если энергия притяжения элек­трона к одному ядру намного больше, чем к другому, то уже нельзя говорить, будто можно игнорировать другие мыслимые состояния. Пусть ядро а (это может быть и положительный ион) притягивает электрон намного сильнее, чем ядро b. Это сильное притяжение может более чем компенсировать взаимное оттал­кивание двух электронов. И если это так, то низшее энергети­ческое состояние может обладать большой амплитудой того, что оба электрона окажутся возле а (образуя отрицательный ион), и малой амплитудой того, что хотя бы один из них обнару­жится возле b. Состояние выглядит как отрицательный ион рядом с положительным ионом. Именно это и случается в «ион­ных» молекулах наподобие NaCl. Вы видите, что мыслимы лю­бые градации между ковалентной связью и ионной связью.

Теперь вы ясно видите, что многие химические факты на квантовомеханическом языке удается очень отчетливо понять.

§ 4. Молекула бензола

Для изображения сложных органических молекул химики изобрели изящные диаграммы. Мы хотим теперь поговорить об одной из самых интересных молекул — о молекуле бензола, диаграмма которой приведена на фиг. 8.6.

Фиг. 8.6. Молекула бензола С6Н6.

В нее входят по шести весьма симметрично расположенных атомов углерода и водо­рода. Каждая черточка на диаграмме представляет пару элек­тронов с противоположными спинами, пляшущих танец ковалентной связи. Каждый атом водорода вводит в игру по одному электрону, а каждый атом углерода — по четыре, образуя в общей сложности систему из 30 участвующих в игре электро­нов. (В углероде ближе к ядру есть еще два электрона, образую­щих первую, или К, оболочку. Они не показаны, поскольку их связь столь тесна, что сколько-нибудь заметной важности для ковалентной связи они не представляют.) Итак, каждая чер­точка на рисунке представляет связь, или пару электронов, а двойные связи означают, что между чередующимися парами атомов углерода имеются по две пары электронов.

С молекулой бензола связана одна загадка. Можно подсчи­тать, какая энергия должна потребоваться на образование этого химического соединения, потому что химики измерили энергии различных соединений, включающих части кольца; к примеру, изучая этилен, они узнали энергию двойной связи и т. д. Поэтому мы можем подсчитать полную энергию, которую должна была бы иметь молекула бензола. Однако истинная энер­гия бензольного кольца намного меньше, чем получается при таком подсчете: кольцо связано куда крепче, чем полагается обычной системе «ненасыщенных двойных связей». Как правило, система двойных связей, не образующая подобного кольца, весьма легко поддается химическим атакам: ее энергия сравни­тельно высока, и, добавляя лишние атомы водорода, двойные связи удается легко разрывать. Не то у бензола — кольцо его почти нерушимо: сломать его нелегко. Иными словами, энергия бензола намного ниже, чем дает подсчет по картине двойных связей.

Имеется еще и другая загадка. Пусть мы заменили два смеж­ных водорода атомами брома, образуя орто-дибромбензол. Это можно сделать двумя путями. Атомы брома могут быть на противоположных концах двойной связи (фиг. 8.7, а) или могут быть на противоположных концах одинарной связи (фиг. 8.7, б).

Фиг.8.7. Две возможности для орто-дибромбензола. Два атома брома могут разделяться либо одиночной связью, либо двойной.

Можно было бы подумать, что должны существовать две разные формы opmo-дибромбензола, но это не так. Есть только одно такое вещество.

Теперь мы собираемся разрешить эти загадки, и вы, может быть, уже догадались как: конечно, дело в том, что «основное состояние» бензольного кольца на самом деле является системой с двумя состояниями. Можно представить себе, что связи в бен­золе могут быть расположены двояким образом, как показано на фиг. 8.8.

Фиг. 8.8. Совокупность базисных состояний для молекулы бензола.

Вы скажете: «Но ведь это одно и то же; у них должна быть одинаковая энергия». Конечно, должна быть. Именно по­этому их и надо анализировать как систему с двумя состояниями. Каждое состояние представляет другую конфигурацию всей совокупности электронов, и существует некоторая амплитуда А того, что все переплетение переключится с одного расположения на другое, есть какой-то шанс, что электроны смогут сменить фигуру в танце.

Как мы видели, эта вероятность переброса приводит к сме­шанному состоянию, энергия которого ниже, чем получилось бы, если бы мы рассчитали каждую из схем, представленных на фиг. 8.8, по отдельности. Вместо этого существуют два стацио­нарных состояния: одно с энергией выше, другое — ниже ожидаемого значения. Значит, в действительности истинное нормальное состояние бензола (с наинизшей энергией) не есть какая-либо из возможностей, представленных на фиг. 8.8, а обладает амплитудой 1/Ц2 пребывания в каждом из нарисованных состояний. Это единственное состояние, которое и стоит принимать в расчет в химии бензола при нормальных темпера­турах. Кстати, существует и верхнее состояние; мы вправе так говорить, потому что бензол обладает сильным поглощением света в ультрафиолетовой области с частотой w= I -EII)/h. Вспомните, что в аммиаке, где прыгающим вверх и вниз объек­том являлась тройка протонов, расстояние между энергиями приходилось на микроволновую область. В бензоле таким объектом являются электроны, и, поскольку они намного легче, им и перескакивать туда-сюда тоже намного легче, отчего и коэффициент А становится куда больше. В итоге разница энер­гий намного больше — около 1,5 эв, а это энергия ультрафиоле­тового фотона.

Что же происходит, когда мы присоединяем бром? Тогда опять возникают две возможности с двумя разными электрон­ными конфигурациями, показанные на фиг. 8.7. Отличие их в том, что те два базисных состояния, из которых мы исходим, обладают теперь слегка различными энергиями. В стационарное состояние с наинизшей энергией по-прежнему войдет линейная комбинация двух состояний, но с неравными амплитудами. Для состояния |1> амплитуда может стать равной, скажем, Ц2/3, для состояния |2> она будет Ц1/3 чтобы знать коэффи­циенты точно, нужна добавочная информация, но, во всяком случае, если уж энергии H11 и H22 не равны друг другу, то и амплитуды СС2не могут быть равны между собой. Это, есте­ственно, означает, что одна из двух изображенных на рисунке возможностей более вероятна, чем другая, но все же электроны достаточно подвижны, чтобы и та, и другая обладали какой-то конечной амплитудой. У другого стационарного состояния


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


8a. Квантовая механика I отзывы

Отзывы читателей о книге 8a. Квантовая механика I, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.