My-library.info
Все категории

Ричард Фейнман - 2a. Пространство. Время. Движение

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Ричард Фейнман - 2a. Пространство. Время. Движение. Жанр: Физика издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
2a. Пространство. Время. Движение
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
148
Читать онлайн
Ричард Фейнман - 2a. Пространство. Время. Движение

Ричард Фейнман - 2a. Пространство. Время. Движение краткое содержание

Ричард Фейнман - 2a. Пространство. Время. Движение - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

2a. Пространство. Время. Движение читать онлайн бесплатно

2a. Пространство. Время. Движение - читать книгу онлайн бесплатно, автор Ричард Фейнман

Значит, чем тяжелее грузик, тем медленнее пружинка будет ко­лебаться взад и вперед. Инерция в этом случае будет больше, и если сила не изменится, то ей понадобится большее время для разгона и торможения груза. Если же взять пружинку пожест­че, то движение должно происходить быстрее; и в самом деле, период уменьшается с увеличением жесткости пружины.

Заметим теперь, что период колебаний массы на пружинке не зависит от того, как колебания начинаются. Для пружинки как будто безразлично, насколько мы ее растянем. Уравнение движения (21.2) определяет период колебаний, но ничего не го­ворит об амплитуде колебания. Амплитуду колебания, конеч­но, определить можно, и мы сейчас займемся этим, но для этого надо задать начальные условия.

Дело в том, что мы еще не нашли самого общего решения уравнения (21.2). Имеется несколько видов решений. Реше­ние x=acosw0t соответствует случаю, когда в начальный мо­мент пружинка растянута, а скорость ее равна нулю. Можно иначе заставить пружинку двигаться, например улучить момент, когда уравновешенная пружинка покоится (х=0), и резко ударить по грузику; это будет означать, что в момент t=0 пружинке сообщена какая-то скорость. Такому движению будет соответствовать другое решение (21.2) — косинус нужно заменить на синус. Бросим в косинус еще один камень: если x=cosw0t—решение, то, войдя в комнату, где качается пружин­ка, в тот момент (назовем его «t=0»), когда грузик проходит через положение равновесия (x=0), мы будем вынуждены заме­нить это решение другим. Следовательно, x=cosw0t не может быть общим решением; общее решение должно допускать, так сказать, перемещение начала отсчета времени. Таким свойст­вом обладает, например, решение x=acosw0(t-t1), где t1 — какая-то постоянная. Далее, можно разложить

cos(w0t+D)=cosw0tcosD-sinw0tsinD и записать

x=Acosw0t+Вsinw0t,

где A=acosD и В=-asinD. Каждую из этих форм можно ис­пользовать для записи общего решения (21.2): любое из су­ществующих в мире решений дифференциального уравнения

d2x/dt2 =-w20x можно записать в виде

x=acosw0(t-t1), (21.6а)

или

x=acos(w0t+D), (21.6б)

или

х=Acosw0t+B sinw0t. (21.6в)

Некоторые из встречающихся в (21.6) величин имеют наз­вания: w0 называют угловой частотой; это число радианов, на которое фаза изменяется за 1 сек. Она определяется дифферен­циальным уравнением. Другие величины уравнением не опре­деляются, а зависят от начальных условий. Постоянная а слу­жит мерой максимального отклонения груза и называется ам­плитудой колебания. Постоянную D иногда называют фазой колебания, но здесь возможны недоразумения, потому что другие называют фазой w0t+D и говорят, что фаза зависит от времени. Можно сказать, что D — это сдвиг фазы по сравнению с некоторой, принимаемой за нуль. Не будем спорить о словах. Разным D соответствуют движения с разными фазами. Вот это верно, а называть ли D фазой или нет — уже другой вопрос.

§ 3. Гармоническое движение и движение по окружности

Косинус в решении уравнения (21.2) наводит на мысль, что гармоническое движение имеет какое-то отношение к движению по окружности. Это сравнение, конечно, искусственное, потому что в линейном движении неоткуда взяться окружности: грузик движется строго вверх и вниз. Можно оправдаться тем, что мы уже решили уравнение гармонического движения, когда изуча­ли механику движения по окружности. Если частица движется по окружности с постоянной скоростью v, то радиус-вектор из центра окружности к частице поворачивается на угол, величина которого пропорциональна времени. Обозначим этот угол q=vt/R (фиг. 21.2).

Фиг. 21.2. Частица, движу­щаяся по кругу с постоянной скоростью.

Тогда dq/dt=w0=v/R. Известно, что ускоре­ние а=v2/R=w20R и направлено к центру. Координаты движу­щейся точки в заданный момент равны

х=Rcosq, y=Rsinq.

Что можно сказать об ускорении? Чему равна x-составляющая ускорения, d2x/dt2. Найти эту величину можно чисто гео­метрически: она равна величине ускорения, умноженной на ко­синус угла проекции; перед полученным выражением надо пос­тавить знак минус, потому что ускорение направлено к центру:

ах=-acosq=-wRcosq=-w20х. (21.7)

Иными словами, когда частица движется по окружности, гори­зонтальная составляющая движения имеет ускорение, пропор­циональное горизонтальному смещению от центра. Конечно, мы знаем решения для случая движения по окружности: x=Rcosw0t. Уравнение (21.7) не содержит радиуса окружности; оно оди­наково при движении по любой окружности при одинаковой w0.

Таким образом, имеется несколько причин, по которым следует ожидать, что отклонение грузика на пружинке окажется пропор­циональным cosw0t и движение будет выглядеть так, как если бы мы следили за x-координатой частицы, движущейся по окружно­сти с угловой скоростью w0 . Проверить это можно, поставив опыт, чтобы показать, что движение грузика вверх-вниз на пружинке в точности соответствует движению точки по окружности. На фиг. 21.3 свет дуговой лампы проектирует на экран тени дви­жущихся рядом воткнутой во вращающийся диск иголки и вер­тикально колеблющегося груза.

Фиг. 21.3. Демонстрация экви­валентности простого гармони­ческого движения и равномерного движения по окружности.

Если вовремя и с нужного места заставить грузик колебаться, а потом осторожно подобрать скорость движения диска так, чтобы частоты их движений сов­пали, тени на экране будут точно следовать одна за другой. Вот еще способ убедиться в том, что, находя численное реше­ние, мы почти вплотную подошли к косинусу.

Здесь можно подчеркнуть, что поскольку математика равно­мерного движения по окружности очень сходна с математикой колебательного движения вверх-вниз, то анализ колебатель­ных движений очень упростится, если представить это движе­ние как проекцию движения по окружности. Иначе говоря, мы можем дополнить уравнение (21.2), казалось бы, совершенно лишним уравнением для у и рассматривать оба уравнения совместно. Проделав это, мы сведем одномерные колебания к движению по окружности, что избавит нас от решения дифферен­циального уравнения. Можно сделать еще один трюк — ввести комплексные числа, но об этом в следующей главе.

§ 4. Начальные условия

Давайте выясним, какой смысл имеют А и В или а и D. Конечно, они показывают, как началось движение. Если движе­ние начнется с малого отклонения, мы получим один тип коле­баний; если слегка растянуть пружинку, а потом ударить по грузику — другой. Постоянные А и В или а и D, или какие-нибудь две другие постоянные определяются обстоятельствами, при которых началось движение, или, как обычно говорят, начальными условиями. Нужно научиться определять постоян­ные, исходя из начальных условий. Хотя для этого можно использовать любое из соотношений (21.6), лучше всего иметь дело с (21.6в). Пусть в начальный момент t=0 грузик смещен от положения равновесия на величину х0и имеет скорость v0. Это самая общая ситуация, какую только можно придумать. (Нельзя задать начального ускорения, потому что оно зависит от свойств пружины; мы можем распорядиться только величи­ной х0.) Вычислим теперь А и В. Начнем с уравнения для

х=Acoswot+Bsinw0t;

поскольку нам понадобится и скорость, продифференцируем х и получим

v=-w0Asinw0t+w0Bcosw0t.

Эти выражения справедливы для всех t, но у нас есть допол­нительные сведения о величинах х и v при t=0. Таким образом, если положить t=0, мы должны получить слева х0и v0, ибо это то, во что превращаются х и v при t=0. Кроме того, мы знаем, что косинус нуля равен единице, а синус нуля равен нулю. Следовательно,


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


2a. Пространство. Время. Движение отзывы

Отзывы читателей о книге 2a. Пространство. Время. Движение, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.