My-library.info
Все категории

Ричард Фейнман - 8a. Квантовая механика I

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Ричард Фейнман - 8a. Квантовая механика I. Жанр: Физика издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
8a. Квантовая механика I
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
166
Читать онлайн
Ричард Фейнман - 8a. Квантовая механика I

Ричард Фейнман - 8a. Квантовая механика I краткое содержание

Ричард Фейнман - 8a. Квантовая механика I - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

8a. Квантовая механика I читать онлайн бесплатно

8a. Квантовая механика I - читать книгу онлайн бесплатно, автор Ричард Фейнман

На самом деле и скорости молекул неодинаковы; они рас­пределены по Максвеллу. Это означает, что идеальные периоды времени для разных молекул окажутся различными, и невоз­можно получить к. п. д., равный 100%, сразу для всех моле­кул. Вдобавок имеется еще одно усложнение, которое, правда, легко принять во внимание, но на этой стадии мы не будем им за­ниматься. Вы помните, что электрическое поле обычно меня­ется в полости от места к месту. Когда молекулы дрейфуют вдоль полости, электрическое поле близ молекул меняется как-то очень сложно, сложнее, чем предположенное нами обыч­ное синусоидальное колебание. Ясно, что для точного решения задачи следовало бы воспользоваться более сложными интег­рированиями, но общая идея остается прежней.

Можно мазеры устраивать и иначе. Не отделять прибором Штерна — Герлаха атомы в состоянии |I> от атомов в состоя­нии |II>, а собрать атомы в какой-то полости (в газообразном или твердом виде) и как-то переселить их из состояния |II> в состояние |I>. Один такой способ применяется в так назы­ваемом трехуровневом мазере. Для него используются атомные системы с тремя уровнями энергии (фиг. 7.6) и со следующими специальными свойствами.

Фиг. 7.6. Уровни энергии «трехуровневого» мазера.

Система поглощает излучение (ска­жем, свет) с энергией hw1и переходит от низшего уровня энер­гии ЕIIк какому-то более высокому уровню Е', а затем быстро испускает фотоны с энергией hw2 и переходит в состояние |/> с энергией ЕI. У состояния |I> большое время жизни, так что его населенность может возрасти; создаются условия, благо­приятствующие работе мазера между состояниями |I> и |II>. Хотя такой прибор называют «трехуровневым» мазером, но сама мазерная процедура на самом деле происходит так же, как и у описанной нами двухуровневой системы.

Лазер — это всего-навсего мазер, действующий на свето­вых частотах. «Полость» лазера обычно состоит попросту из двух зеркал, между которыми генерируются стоячие волны.

§ 5. Переходы вне резонанса

Наконец, хотелось бы выяснить, как изменяются состояния в условиях, когда частота полости, хотя и близка к w0, но не совпадает с ней. Эту задачу можно было бы решить точно, но мы не будем пытаться это делать, а обратимся к важному слу­чаю малого электрического поля и малого промежутка време­ни Т, так что mx0T/h много меньше единицы. Тогда даже в слу­чае уже изученного нами идеального - резонанса вероятность перехода очень мала. Будем исходить опять из того, что gI=1 и gII=0. Тогда мы вправе ожидать, что в течение всего времени Т наша величина gI останется близкой к единице, а gII будет малой по сравнению с единицей, и задача облегчается. Из вто­рого уравнения (7.45) мы можем подсчитать gII, принимая gIравной единице и интегрируя от t=0 до t=T. Получается

Это та величина gII, которая стоит в (7.40), и она дает амплитуду того, что переход из состояния |I> в состояние |II> произой­дет за время Т. Вероятность Р (I®II) такого перехода равна

|gII|2, или

Интересно начертить эту вероятность при фиксированном времени T как функцию частоты полости, чтобы посмотреть, насколько чувствительна она к частотам близ резонансной ча­стоты w0. Кривая Р (I®II) показана на фиг. 7.7.

Фиг. 7.7. Вероятность перехода для молекулы аммиака как функция частоты.

(Вертикаль­ная шкала была подогнана так, чтобы в пике была единица, для этого разделили на величину вероятности при w=w0.) С подобными кривыми мы встречались в теории дифракции, так что они должны быть вам знакомы. Кривая довольно резко падает до нуля при

(w-w0)=2p/T и никогда при больших отклонениях частоты снова не достигает заметной величины. Почти вся площадь под кривой лежит в пределах ±p/T. Можно показать [с помощью формулы

что площадь под кривой равна 2p/T и совпадает с площадью выделен­ного штрихованной линией прямоугольника.

Посмотрим, что это дает для реального мазера. Возьмем разумное время пребывания молекулы аммиака в полости, ска­жем 1 мсек. Тогда для f0=24000 Мгц можно подсчитать, что вероятность падает до нуля при отклонениях (f-f0)/f0=1/f0T, т. е. порядка 5·10-8. Очевидно, что для заметных вероятностей перехода частоты должны очень точно совпадать с w0. Этот эффект является основой той большой точности, которой можно достичь в «атомных» часах, работающих на принципе мазера.

§ 6. Поглощение света

Наше изложение применимо и к более общему случаю, чем аммиачный мазер. Мы ведь изучали поведение молекулы под влиянием электрического поля независимо от того, заклю­чено оно в полость или нет. Просто можно было направить пучок «света» — микроволновой частоты — на молекулу и искать вероятность испускания или поглощения. Наши урав­нения ничуть не хуже применимы и к этому случаю, но только лучше переписать их на языке интенсивности излучения, а не электрического поля. Если определить интенсивность как средний поток энергии через единицу площади в секунду, то из гл. 27 (вып. 6) следует

(Максимум x равен 2x0.) Вероятность перехода принимает вид

Обычно свет, освещающий подобную систему, не точно монохроматичен. Поэтому интересно решить еще одну задачу— подсчитать вероятность перехода, когда интенсивность света на единицу интервала частот равна и покрывает собой широкую полосу, включающую w0. Тогда вероятность перехо­да от |I> к |II> обратится в интеграл

Как правило, меняется с w медленнее, чем острый резо­нансный фактор. Эти две функции могут выглядеть так, как по­казано на фиг. 7.8.

Фиг. 7.8. Спектральная интенсивность может быть представлена своим значением при w0.

В таких случаях можно заменить ее значением в центре острой резонансной кривой и вы­нести из-под интеграла. Оставшийся интеграл — это просто площадь под кривой на фиг. 7.7, которая, как известно, равна 2p/Т. Мы приходим к результату

Это очень важный результат; перед нами общая теория поглощения света любой молекулярной или атомной системой. Хотя мы вначале считали, что состояние |I> обладает более высокой энергией, чем состояние |II>, но никакие наши рас­суждения от этого не зависели. Уравнение (7.55) соблюдается и тогда, когда энергия состояния |I> ниже энергии состояния |II>; тогда Р (I®II) представляет собой вероятность перехода с поглощением энергии от падающей электромагнитной волны. Поглощение атомной системой света всегда предполагает, что имеется амплитуда для перехода в колеблющемся электриче­ском поле между состояниями, отличающимися на энергию E=hw0. В каждом отдельном случае она рассчитывается так же, как мы это проделали, и дает выражения наподобие (7.55). Поэтому мы подчеркнем следующие свойства этой формулы. Во-первых, вероятность пропорциональна Т. Иными словами, существует неизменная вероятность на единицу времени, что переход произойдет. Во-вторых, эта вероятность пропорцио­нальна интенсивности света, падающего на систему. В-третьих, вероятность перехода пропорциональна m2, где, как вы помните, mx определяет энергетический сдвиг, вызываемый электриче­ским полем x. По этой именно причине mx появлялось и в урав­нениях (7.38) и (7.39) в качестве коэффициента связи, ответствен­ного за переход между стационарными состояниями |I> и |II>. Иными словами, для рассматривавшихся нами малых x член mx есть так называемое «возмущение» в матричном элементе гамильтониана, связывающем состояния |/> и |//>. В общем случае mx заменилось бы матричным элементом <II|H|I> (см. гл. 3, § 6).

В гл. 42, § 5 (вып. 4) мы говорили о связи между поглоще­нием света, вынужденным испусканием и самопроизвольным испусканием в терминах введенных Эйнштейном коэффициентов А и В. Здесь наконец-то в наших руках появляется квантовомеханическая процедура для подсчета этих коэффициентов. То, что мы обозначили Р (I®II) для нашей аммиачной двухуровневой молекулы, в точности соответствует коэффициенту поглощения Bnmв эйнштейновской теории излучения. Из-за сложности молекулы аммиака — слишком трудной для рас­чета — нам пришлось взять матричный элемент <II|H|I> в виде mx и говорить, что m извлекается из опыта. Для более про­стых атомных систем величину mmn, отвечающую к произвольному переходу, можно подсчитать, исходя из определения


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


8a. Квантовая механика I отзывы

Отзывы читателей о книге 8a. Квантовая механика I, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.